
Федеральное государственное бюджетное образовательное учреждение

высшего образования «Самарский государственный медицинский

университет» Министерства здравоохранения Российской Федерации

Программа для ЭВМ

«АЛГОРИТМ ДЛЯ УПРАВЛЕНИЯ БИОНИЧЕСКИМИ

ИНТЕЛЛЕКТУАЛЬНЫМИ ДИАГНОСТИЧЕСКИМИ СИСТЕМАМИ MIO»

Руководство пользователя

Самара 2025

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

2

Аннотация

Настоящее руководство содержит полное описание процедур

установки, настройки и работы с программным обеспечением «Алгоритм

для управления бионическими интеллектуальными диагностическими

системами MIO». Документ предназначен для системных администраторов,

разработчиков, исследователей и конечных пользователей, которые будут

работать с экзо-устройствами через специализированные приложения или

напрямую через API.

Руководство состоит из следующих основных разделов:

− Общие сведения о программном обеспечении

− Системные требования и подготовка к развертыванию

− Подробная процедура установки и настройки

− Архитектура ПО и описание модулей

− Работа с данными: сбор, обработка, классификация сигналов

− Интеграция с аппаратным комплексом и клиентскими приложениями

− Администрирование и обслуживание

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

3

Оглавление

1. Общие сведения о программном обеспечении .. 5

1.1. Назначение и область применения ... 5

1.2. Основные характеристики и состав данных 5

1.3. Архитектура и принципы работы ... 5

2. Подготовка к развертыванию .. 7

2.1. Получение дистрибутива базы данных .. 7

2.2. Требования к аппаратному обеспечению .. 7

2.3. Требования к программному обеспечению 8

2.4. Подготовка рабочей станции и аппаратного комплекса 8

3. Установка и настройка программного обеспечения 10

3.1. Установка базового программного окружения 10

3.2. Установка программного обеспечения .. 10

3.3. Настройка параметров подключения к аппаратному комплексу .. 11

3.4. Настройка пользователей и прав доступа .. 12

3.5. Проверка корректности установки ... 12

4. Архитектура и модули программного обеспечения 14

4.1. Общая схема ПО .. 14

4.2. Описание основных модулей .. 14

4.3. Взаимодействие модулей и поток данных....................................... 15

4.4. Хранение данных и конфигураций... 15

5. Работа с данными и сигналами ... 16

5.1. Подключение к ПО и инициализация системы 16

5.2. Основные операции: сбор, обработка и классификация сигналов 16

5.3. Калибровка sEMG-датчиков и обучение модели 17

5.4. Управление экзо-устройством в реальном времени 17

5.5. Работа с метаданными и результатами сессий 18

6. Интеграция с аппаратным комплексом и клиентскими приложениями

 .. 18

6.1. Настройка подключения к экзо-устройствам 18

6.2. Форматы данных и протоколы обмена .. 19

6.3. Оптимизация работы в реальном времени 20

6.4. Примеры использования API .. 21

7. Администрирование и обслуживание .. 23

7.1. Регулярные операции обслуживания ... 23

7.2. Резервное копирование и восстановление данных 23

7.3. Мониторинг производительности и отладка 24

7.4. Обновление программного обеспечения ... 25

8. Решение проблем и техническая поддержка ... 26

8.1. Типичные проблемы и способы их решения 26

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

4

8.2. Контакты технической поддержки ... 27

Словарь терминов и сокращений .. 28

Приложение А ... 29

Приложение Б ... 32

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

5

1. Общие сведения о программном обеспечении

 1.1. Назначение и область применения

Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO» предназначено для

управления бионическими роботизированными экзо-устройствами (такими

как экзоскелеты, умная одежда, портативные миографы) на основе анализа

сигналов поверхностной электромиографии (sEMG).

Основные области применения:

− Медицинская реабилитация и протезирование

− Физическая культура, ЛФК, спорт

− Научно-исследовательская деятельность в области биомеханики и

нейроуправления

− Разработка и тестирование новых алгоритмов управления

− Образовательные цели в области бионических систем

 1.2. Основные характеристики и состав данных

Ключевые характеристики:

− Поддержка многоканального сбора sEMG-сигналов (до 16 каналов)

− Реальное время обработки сигналов (задержка < 100 мс)

− Интеграция с экзо-устройствами по различным протоколам (UDP, TCP,

Serial, Bluetooth)

− Машинное обучение для классификации движений

− Модульная архитектура с поддержкой расширений

Основные функциональные возможности:

− Сбор и визуализация sEMG-сигналов в реальном времени

− Предобработка сигналов (фильтрация, удаление артефактов)

− Извлечение признаков и классификация намерений пользователя

− Управление экзо-устройством на основе распознанных паттернов

− Запись и воспроизведение сессий

− Калибровка и персонализация под конкретного пользователя

 1.3. Архитектура и принципы работы

Программное обеспечение реализовано на основе модульной

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

6

архитектуры с использованием Python и специализированных библиотек для

обработки сигналов и машинного обучения.

Ключевые архитектурные особенности:

− Микросервисная архитектура с четким разделением ответственности

− Поддержка работы в реальном времени

− Гибкая система конфигурации и плагинов

− Масштабируемость и возможность интеграции с внешними системами

−

Принцип работы:

− Сигналы с sEMG-датчиков поступают в модуль сбора данных

− Модуль обработки выполняет фильтрацию и извлечение признаков

− Модель машинного обучения классифицирует намерение пользователя

− Модуль управления преобразует классификацию в команды для экзо-

устройства

− Пользовательский интерфейс отображает процесс в реальном времени

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

7

2. Подготовка к развертыванию

 2.1. Получение дистрибутива базы данных

Дистрибутив программного обеспечения предоставляется в виде

установочного пакета для целевой операционной системы (Windows или

Linux).

− Процесс получения:

− Обратитесь в ФГБОУ ВО СамГМУ для заключения лицензионного

соглашения.

− Получите доступ к защищенному репозиторию для загрузки.

− Скачайте соответствующий установочный файл:

− Для Windows: MIO_Setup_Windows_<версия>.exe

− Для Linux: MIO_Setup_Linux_<версия>.tar.gz

− Проверьте целостность файла по предоставленной контрольной сумме

(SHA-256).

Состав дистрибутива:

− Основной установочный файл ПО.

− Драйверы для поддерживаемого оборудования (при необходимости).

− Документация в формате PDF.

− Примеры конфигурационных файлов и скриптов.

− Тестовые наборы данных для проверки работы.

2.2. Требования к аппаратному обеспечению

Минимальные требования для рабочей станции:

− Процессор: 4 ядра x86-64 с поддержкой SSE4.2

− Оперативная память: 8 ГБ

− Дисковое пространство: 5 ГБ свободного места на SSD

− Сетевая карта: 1 Гбит/с

− Порты: не менее 4 портов USB 3.0

Рекомендуемые требования для продуктивной работы:

− Процессор: 8+ ядер с поддержкой AVX2

− Оперативная память: 16+ ГБ

− Дисковая подсистема: SSD NVMe, 50+ ГБ свободного места

− Сетевая карта: 1 Гбит/с с поддержкой Jumbo frames

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

8

− Видеокарта: Дискретная с поддержкой CUDA (для ускорения ML-

алгоритмов)

Требования к аппаратному комплексу:

− sEMG-датчики: Совместимые по протоколам Bluetooth 4.0+/Wi-Fi,

рекомендуемое количество каналов: 8-16.

− Экзо-устройство: С открытым API или поддержкой стандартных

протоколов (UDP, TCP, Serial, ROS).

− Сетевая инфраструктура: Стабильное подключение для синхронизации

данных между компонентами.

 2.3. Требования к программному обеспечению

Для операционной системы Windows:

− ОС: Windows 10/11 (64-битная), Windows Server 2016/2019/2022

− Дополнительное ПО:

− Python 3.8–3.10 (устанавливается автоматически или вручную)

− Microsoft Visual C++ Redistributable 2015–2022

− Драйверы для конкретного sEMG-оборудования

Для операционной системы Linux:

− ОС: Ubuntu 20.04/22.04 LTS, CentOS 8/RHEL 8 (64-битная)

− Дополнительное ПО:

− Python 3.8–3.10

− Библиотеки: libusb-1.0, libbluetooth, libssl

− Драйверы ядра для поддерживаемого оборудования

Клиентское ПО (опционально):

− Инструменты разработки: Visual Studio Code, PyCharm, Jupyter Notebook

− Библиотеки для анализа: NumPy, SciPy, Pandas, Matplotlib

− Фреймворки машинного обучения: TensorFlow 2.x, PyTorch 1.10+

− Система управления робототехникой: ROS 2 (при интеграции)

2.4. Подготовка рабочей станции и аппаратного комплекса

Подготовка рабочей станции:

1) Установите и настройте операционную систему.

2) Убедитесь, что все системные обновления установлены.

3) Отключите энергосберегающие режимы процессора и USB-

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

9

контроллеров.

4) Настройте статический IP-адрес, если требуется сетевое

взаимодействие.

Подготовка аппаратного комплекса:

1) Установите sEMG-датчики на пользователя согласно инструкции

производителя.

2) Подключите датчики к рабочей станции (USB/Bluetooth/Wi-Fi).

3) Убедитесь, что экзо-устройство находится в исправном состоянии и

заряжено.

4) Подключите экзо-устройство к рабочей станции или локальной сети.

Настройка сети (при необходимости):

Пример настройки статического IP в Linux

sudo nmcli con mod "Проводное соединение" ipv4.addresses "192.168.1.100/24"

sudo nmcli con mod "Проводное соединение" ipv4.gateway "192.168.1.1"

sudo nmcli con mod "Проводное соединение" ipv4.dns "8.8.8.8"

sudo nmcli con up "Проводное соединение"

Проверка подключения оборудования:

1) Убедитесь, что sEMG-датчики определяются в системе.

2) Проверьте связь с экзо-устройством (ping, тестовые команды).

3) Запустите тестовые утилиты от производителей оборудования для

проверки сигналов.

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

10

3. Установка и настройка программного обеспечения

3.1. Установка базового программного окружения

Для Windows:

1) Установите Python 3.8–3.10 с официального сайта, отметьте опцию "Add

Python to PATH".

2) Установите Microsoft Visual C++ Redistributable.

3) Установите драйверы для sEMG-оборудования (следуйте инструкции

производителя).

Для Linux (Ubuntu/Debian):

Обновление системы

sudo apt update && sudo apt upgrade -y

Установка Python и необходимых библиотек

sudo apt install python3.9 python3.9-venv python3.9-dev python3-pip -y

Установка системных библиотек

sudo apt install libusb-1.0-0 libbluetooth-dev libssl-dev -y

Установка драйверов (пример для конкретного оборудования)

Следуйте инструкции производителя

3.2. Установка программного обеспечения

Установка через установщик (Windows):

1) Запустите файл MIO_Setup_Windows_<версия>.exe от имени

администратора.

2) Следуйте инструкциям мастера установки.

3) Выберите путь установки (рекомендуется: C:\Program Files\MIO).

4) После установки запустите ярлык "MIO Control Center" с рабочего стола.

Установка из архива (Linux):

Распаковка архива

tar -xzf MIO_Setup_Linux_<версия>.tar.gz

cd MIO_<версия>

Запуск скрипта установки

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

11

sudo ./install.sh

Или ручная установка в виртуальное окружение

python3.9 -m venv venv_mio

source venv_mio/bin/activate

pip install -r requirements.txt

python setup.py install

3.3. Настройка параметров подключения к аппаратному комплексу

Настройка подключения к sEMG-датчикам:

1) Откройте файл конфигурации config/device_config.yaml.

2) Укажите параметры для каждого датчика:

sensors:

 sensor_1:

 type: "BLE" # или USB, WiFi

 mac_address: "00:11:22:33:44:55"

 sampling_rate: 1000

 channels: 8

 sensor_2:

 type: "USB"

 vid: 0x1234

 pid: 0x5678

Настройка подключения к экзо-устройству:

1) Откройте файл конфигурации config/robot_config.yaml.

2) Укажите параметры устройства:

robot:

 type: "ExoArm"

 protocol: "TCP"

 host: "192.168.1.50"

 port: 5000

 timeout: 2.0

 command_format: "json"

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

12

3.4. Настройка пользователей и прав доступа

Создание пользователей системы:

1) Запустите утилиту управления пользователями:

python manage_users.py --create-user --username оператор --role operator

2) Доступные роли:

− admin: полный доступ к системе

− operator: работа с устройством, калибровка

− viewer: только просмотр данных

− researcher: доступ к сырым данным и экспорту

3) Настройка прав доступа к файловой системе:

На Linux: предоставьте права на доступ к USB-устройствам

sudo usermod -a -G dialout $USER

sudo usermod -a -G tty $USER

Перезапустите систему или перелогиньтесь

3.5. Проверка корректности установки

Тест 1: Проверка подключения к датчикам

python test_sensors.py --list

Ожидаемый вывод: список подключенных датчиков

Тест 2: Проверка связи с экзо-устройством

python test_robot.py --ping

Ожидаемый вывод: "Устройство отвечает"

Тест 3: Проверка основных функций ПО

Запуск тестового сценария

python run_test_suite.py --basic

Проверка установленных библиотек

python -c "import numpy, scipy, tensorflow; print('Библиотеки загружены')"

Тест 4: Проверка производительности в реальном времени

Запуск теста задержек

python test_latency.py --duration 10

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

13

Приемлемая задержка: < 100 мс

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

14

4. Архитектура и модули программного обеспечения

4.1. Общая схема ПО

Программное обеспечение построено по модульной архитектуре с

четким разделением ответственности:

4.2. Описание основных модулей

Модуль сбора данных (Data Acquisition):

− Назначение: Получение сырых sEMG-сигналов с датчиков.

− Формат данных: Массивы NumPy с временными метками.

− Частота дискретизации: Настраиваемая, 500–2000 Гц.

Модуль обработки сигналов (Signal Processing):

− Фильтрация: БИХ/КИХ-фильтры, notch-фильтр 50 Гц.

− Нормализация: Адаптивная нормализация по амплитуде.

− Извлечение признаков: MAV, RMS, Zero Crossing, спектральные

признаки.

Модуль машинного обучения (ML Model):

− Классификаторы: LDA, SVM, нейронные сети (CNN, LSTM).

− Обучение: Онлайн и офлайн обучение с графическим интерфейсом.

− Форматы моделей: TensorFlow SavedModel, PyTorch .pt, ONNX.

Модуль управления устройством (Device Control):

− Протоколы: TCP/UDP, Serial (RS-232/485), ROS topics.

− Команды: Позиционирование, усиление, режимы работы.

− Безопасность: Проверка пределов, аварийная остановка.

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

15

4.3. Взаимодействие модулей и поток данных

Типичный поток данных:

− Датчики → Сбор данных (сырые сигналы)

− Сбор данных → Обработка сигналов (фильтрованные сигналы)

− Обработка сигналов → Модель ML (признаки → классификация)

− Модель ML → Управление устройством (команды)

− Все модули → Хранилище данных (логирование)

Конфигурация конвейера обработки:

Пример конфигурации pipeline

pipeline_config = {

 "sampling_rate": 1000,

 "processing_steps": ["bandpass", "notch", "normalize"],

 "features": ["MAV", "RMS", "WL"],

 "classifier": "CNN",

 "control_mode": "position"

}

4.4. Хранение данных и конфигураций

Структура каталогов:

MIO/

├── config/ # Конфигурационные файлы

├── data/ # Данные сессий

│ ├── raw/ # Сырые сигналы

│ ├── processed/ # Обработанные данные

│ └── models/ # Обученные модели

├── logs/ # Логи системы

├── scripts/ # Вспомогательные скрипты

└── docs/ # Документация text

Форматы хранения:

− Конфигурации: YAML, JSON

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

16

− Сигналы: HDF5 (.h5), MATLAB (.mat), CSV

− Модели: TensorFlow SavedModel, PyTorch .pt

− Логи: Текстовые файлы, системный журнал

5. Работа с данными и сигналами

5.1. Подключение к ПО и инициализация системы

Запуск системы:

Способ 1: Через графический интерфейс

python launch_gui.py

Способ 2: Через командную строку

python main.py --config config/default_config.yaml

Инициализация оборудования:

1) В интерфейсе выберите "Подключить оборудование".

2) Система автоматически обнаружит доступные датчики и устройство.

3) Проверьте статус подключения на панели состояния.

5.2. Основные операции: сбор, обработка и классификация сигналов

Запуск сбора данных:

from mio_core import DataAcquisition

daq = DataAcquisition(config="config/sensor_config.yaml")

daq.start_streaming() # Начало потока данных

Чтение данных в реальном времени

while True:

 data = daq.read_next_buffer() # Буфер 100 мс

 process_data(data)

Обработка сигналов в реальном времени:

from mio_processing import SignalProcessor

processor = SignalProcessor()

processor.set_filter("bandpass", low=20, high=500)

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

17

processor.set_notch_filter(freq=50)

processed_data = processor.process(raw_data)

features = processor.extract_features(processed_data)

5.3. Калибровка sEMG-датчиков и обучение модели

Процедура калибровки:

1) Запустите мастер калибровки: python calibrate.py --user пользователь1

2) Выполните указанные движения (сгибание, разгибание, покой).

3) Система запишет сигналы для каждого класса движений.

4) Нажмите "Обучить модель" для создания классификатора.

Обучение модели:

from mio_ml import ModelTrainer

trainer = ModelTrainer()

trainer.load_training_data("data/calibration/user1_session1.h5")

trainer.set_algorithm("LDA") # или "SVM", "CNN"

model = trainer.train()

model.save("data/models/user1_lda_model.h5")

5.4. Управление экзо-устройством в реальном времени

Базовый сценарий управления:

from mio_control import RobotController

controller = RobotController(config="config/robot_config.yaml")

controller.connect()

Основной цикл управления

while system_running:

 # Получение классификации от ML-модели

 movement_class = ml_model.predict(current_features)

 # Преобразование в команду для устройства

 command = controller.create_command(movement_class)

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

18

 # Отправка команды

 controller.send_command(command)

 time.sleep(0.01) # 10 мс цикл

5.5. Работа с метаданными и результатами сессий

Сохранение сессии:

from mio_data import SessionManager

session = SessionManager(user="user1", task="reaching")

session.start_recording()

... работа с системой ...

session.stop_recording()

session.save_metadata({

 "duration": "5 minutes",

 "movements": ["flexion", "extension"],

 "notes": "Первая сессия после калибровки"

})

Экспорт данных:

Экспорт в CSV

python export_data.py --session session_001 --format csv

Экспорт в MATLAB

python export_data.py --session session_001 --format mat

Генерация отчета

python generate_report.py --session session_001 --output report.pdf

6. Интеграция с аппаратным комплексом и клиентскими приложениями

6.1. Настройка подключения к экзо-устройствам

Поддержка различных протоколов:

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

19

TCP/UDP:

config/robot_tcp.yaml

robot:

 protocol: "TCP"

 host: "192.168.1.100"

 port: 5000

 command_format: "json"

 timeout: 1.0

Serial (RS-232/485):

yaml

config/robot_serial.yaml

robot:

 protocol: "SERIAL"

 port: "/dev/ttyUSB0"

 baudrate: 115200

 parity: "N"

ROS (Robot Operating System):

config/robot_ros.yaml

robot:

 protocol: "ROS"

 topic_command: "/mio/command"

 topic_feedback: "/mio/feedback"

 ros_master: "http://localhost:11311"

6.2. Форматы данных и протоколы обмена

Формат команд (JSON):

{

 "timestamp": "2025-01-15T10:30:00.123Z",

 "command_id": "cmd_001",

 "movement_type": "flexion",

 "parameters": {

 "angle": 45.0,

 "velocity": 0.5,

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

20

 "force_limit": 10.0

 },

 "safety_checks": {

 "max_angle": 90.0,

 "max_current": 2.0

 }

}

Формат обратной связи:

{

 "timestamp": "2025-01-15T10:30:00.150Z",

 "status": "executing",

 "current_angle": 22.5,

 "current_force": 3.2,

 "errors": []

}

6.3. Оптимизация работы в реальном времени

Настройка параметров реального времени:

Установка приоритета процесса (Linux)

import os

os.nice(-10) # Повышение приоритета

Использование реального времени для критичных потоков

import threading

rt_thread = threading.Thread(target=critical_function)

rt_thread.daemon = True

rt_thread.start()

Буферизация данных:

from collections import deque

from threading import Lock

class RealTimeBuffer:

 def __init__(self, maxlen=1000):

 self.buffer = deque(maxlen=maxlen)

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

21

 self.lock = Lock()

 def add_data(self, data):

 with self.lock:

 self.buffer.append(data)

 def get_latest(self):

 with self.lock:

 return self.buffer[-1] if self.buffer else None

6.4. Примеры использования API

Python API для интеграции:

from mio_sdk import MIOClient

Инициализация клиента

client = MIOClient(host="localhost", port=8080)

Подключение к системе

client.connect()

Запуск сбора данных

client.start_streaming()

Получение данных в реальном времени

def data_callback(data):

 print(f"Получены данные: {data.shape}")

client.set_callback(data_callback)

Отправка команды устройству

client.send_command({

 "movement": "grasp",

 "intensity": 0.7

})

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

22

Остановка системы

client.disconnect()

REST API для веб-приложений:

Получение статуса системы

curl -X GET http://localhost:8080/api/status

Запуск сессии

curl -X POST http://localhost:8080/api/session/start \

 -H "Content-Type: application/json" \

 -d '{"user": "patient01", "mode": "training"}'

Отправка команды

curl -X POST http://localhost:8080/api/command \

 -H "Content-Type: application/json" \

 -d '{"action": "move", "parameters": {"angle": 45}}'

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

23

7. Администрирование и обслуживание

7.1. Регулярные операции обслуживания

Ежедневные задачи:

1) Проверка целостности данных:

python check_data_integrity.py --data-dir ./data

2) Очистка временных файлов:

python cleanup_temp_files.py --older-than 7

3) Проверка свободного места на диске.

Еженедельные задачи:

1) Резервное копирование конфигураций и моделей.

2) Обновление журналов событий.

3) Проверка обновлений ПО.

7.2. Резервное копирование и восстановление данных

Автоматическое резервное копирование:

#!/bin/bash

backup_mio.sh

BACKUP_DIR="/backup/mio"

DATE=$(date +%Y%m%d_%H%M%S)

Создание резервной копии

tar -czf "$BACKUP_DIR/mio_backup_$DATE.tar.gz" \

 config/ \

 data/models/ \

 data/calibration/ \

 docs/custom/

Удаление старых резервных копий (храним 30 дней)

find "$BACKUP_DIR" -name "*.tar.gz" -mtime +30 -delete

Восстановление из резервной копии:

Остановка системы

sudo systemctl stop mio

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

24

Восстановление данных

tar -xzf mio_backup_20250115.tar.gz -C /

Проверка восстановленных данных

python verify_backup.py --backup mio_backup_20250115.tar.gz

Запуск системы

sudo systemctl start mio

7.3. Мониторинг производительности и отладка

Мониторинг в реальном времени:

Мониторинг загрузки CPU и памяти

python monitor_performance.py --interval 1 --output performance.log

Проверка задержек в системе

python check_latency.py --test-all

Анализ журналов

python analyze_logs.py --log-dir ./logs --period today

Инструменты отладки:

Включение детального логирования

import logging

logging.basicConfig(level=logging.DEBUG)

Профилирование производительности

import cProfile

pr = cProfile.Profile()

pr.enable()

... выполнение кода ...

pr.disable()

pr.print_stats(sort='time')

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

25

7.4. Обновление программного обеспечения

Проверка обновлений:

python check_updates.py --channel stable

Установка обновлений:

Для Windows: запустите новый установщик

Для Linux:

sudo ./update_mio.sh --version 2.1.0

Миграция данных при обновлении:

Автоматическая миграция конфигураций

python migrate_configs.py --from-version 2.0 --to-version 2.1

Конвертация старых форматов данных

python convert_data_formats.py --input-dir ./data --format v1_to_v2

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

26

8. Решение проблем и техническая поддержка

8.1. Типичные проблемы и способы их решения

Проблема 1: Нет сигнала с sEMG-датчиков

Симптом: В интерфейсе отображается "Нет сигнала" или нулевые значения.

Решение:

1. Проверьте физическое подключение датчиков.

2. Убедитесь, что драйверы установлены правильно.

3. Перезапустите службу сбора данных.

4. Проверьте батареи беспроводных датчиков.

Проблема 2: Высокая задержка в системе

Симптом: Задержка между движением и откликом устройства > 150 мс.

Решение:

1. Уменьшите частоту дискретизации.

2. Упростите модель классификации.

3. Закройте фоновые приложения.

4. Проверьте нагрузку на сеть (для беспроводных датчиков).

Проблема 3: Низкая точность классификации

Симптом: Система неправильно распознает движения.

Решение:

1. Повторите калибровку.

2. Увеличьте количество тренировочных данных.

3. Проверьте расположение датчиков на коже.

4. Попробуйте другой алгоритм классификации.

Проблема 4: Устройство не отвечает

Симптом: Команды не выполняются, нет обратной связи.

Решение:

1. Проверьте кабель/соединение с устройством.

2. Убедитесь, что устройство включено.

3. Проверьте настройки протокола и адреса.

4. Перезапустите драйверы устройства.

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

27

8.2. Контакты технической поддержки

Основные контакты:

− Телефон: 8 (846) 374-10-01

− Электронная почта: cnti@samsmu.ru

Часы работы технической поддержки:

− Понедельник-пятница: 9:00-17:00 (по московскому времени)

− Суббота: 10:00-15:00 (дежурная поддержка)

− Воскресенье: выходной

Информация для обращения в поддержку:

1) Версия ПО MIO (см. python -c "import mio; print(mio.__version__)")

2) Версия операционной системы

3) Модели используемого оборудования (датчиков и экзо-устройства)

4) Текст ошибки (если есть)

5) Логи системы (файлы в ./logs/)

6) Скриншоты проблемы (если применимо)

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

28

Словарь терминов и сокращений

Термин/Сокращение Определение

sEMG
Поверхностная электромиография - метод регистрации

электрической активности мышц с поверхности кожи

ЭМГ Электромиография

ПО Программное обеспечение

API Интерфейс программирования приложений

ML Машинное обучение

LDA Линейный дискриминантный анализ

SVM Метод опорных векторов

CNN Сверточная нейронная сеть

LSTM Долгая краткосрочная память (тип нейронной сети)

ROS Robot Operating System

UDP/TCP Протоколы передачи данных

JSON Формат обмена данными

GUI Графический пользовательский интерфейс

MAV Среднее абсолютное значение (признак EMG)

RMS Среднеквадратичное значение (признак EMG)

WL Длина волны (признак EMG)

HDF5 Иерархический формат данных

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

29

Приложение А

Примеры использования API

Пример 1: Полный сценарий работы

import time

from mio_sdk import MIOController

Инициализация

controller = MIOController(config_path="config/full_config.yaml")

Подключение

controller.connect_all()

Калибровка (если требуется)

if not controller.is_calibrated():

 controller.calibrate_user()

Основной цикл работы

try:

 controller.start_session(user="patient01", task="rehabilitation")

 for i in range(1000): # 1000 циклов обработки

 # Получение и обработка данных

 data = controller.read_sensors()

 processed = controller.process_signals(data)

 # Классификация движения

 movement = controller.classify_movement(processed)

 # Управление устройством

 controller.send_to_device(movement)

 # Логирование

 controller.log_data(data, movement)

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

30

 time.sleep(0.01) # 10 мс цикл

finally:

 # Завершение сессии

 controller.stop_session()

 controller.save_session_data("session_001.h5")

 controller.disconnect_all()

Пример 2: Интеграция с пользовательским интерфейсом

import tkinter as tk

from mio_sdk import MIOSimpleClient

class MIOGUI:

 def __init__(self):

 self.client = MIOSimpleClient()

 self.setup_ui()

 def setup_ui(self):

 self.root = tk.Tk()

 self.root.title("MIO Control Panel")

 # Кнопки управления

 tk.Button(self.root, text="Подключить", command=self.connect).pack()

 tk.Button(self.root, text="Калибровать", command=self.calibrate).pack()

 tk.Button(self.root, text="Запуск", command=self.start).pack()

 tk.Button(self.root, text="Стоп", command=self.stop).pack()

 # Отображение данных

 self.data_label = tk.Label(self.root, text="Статус: Ожидание")

 self.data_label.pack()

 def connect(self):

 self.client.connect()

 self.data_label.config(text="Статус: Подключено")

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

31

 def calibrate(self):

 self.client.calibrate()

 self.data_label.config(text="Статус: Калибровка")

 def start(self):

 self.client.start_streaming()

 self.data_label.config(text="Статус: Работает")

 def stop(self):

 self.client.stop_streaming()

 self.data_label.config(text="Статус: Остановлено")

 def run(self):

 self.root.mainloop()

Запуск интерфейса

if __name__ == "__main__":

 gui = MIOGUI()

 gui.run()

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

32

Приложение Б

Форматы данных и протоколы

Формат файла сессии (HDF5):

/session_001.h5

├── /metadata (атрибуты)

│ ├── user: "patient01"

│ ├── date: "2025-01-15"

│ └── duration: 300.5

├── /raw_data (dataset)

│ ├── emg: [30000, 8] # 30 сек, 8 каналов

│ ├── timestamps: [30000]

│ └── sampling_rate: 1000

├── /processed_data (dataset)

│ ├── filtered: [30000, 8]

│ └── features: [3000, 10] # 10 признаков каждые 100 мс

└── /commands (dataset)

 ├── timestamps: [3000]

 ├── predicted: [3000] # Предсказанные классы

 └── executed: [3000] # Исполненные команды

Протокол обмена по TCP:

Сервер (устройство)

import socket

import json

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.bind(('0.0.0.0', 5000))

server.listen(1)

while True:

 conn, addr = server.accept()

 data = conn.recv(1024)

 command = json.loads(data.decode())

Руководство пользователя – Программное обеспечение «Алгоритм для управления бионическими

интеллектуальными диагностическими системами MIO»

33

 # Обработка команды

 response = process_command(command)

 # Отправка ответа

 conn.send(json.dumps(response).encode())

 conn.close()

Клиент (ПО MIO)

import socket

import json

def send_command(command, host='192.168.1.100', port=5000):

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 sock.connect((host, port))

 sock.send(json.dumps(command).encode())

 response = sock.recv(1024)

 sock.close()

 return json.loads(response.decode())

	1. Общие сведения о программном обеспечении
	1.1. Назначение и область применения
	1.2. Основные характеристики и состав данных
	1.3. Архитектура и принципы работы

	2. Подготовка к развертыванию
	2.1. Получение дистрибутива базы данных
	2.2. Требования к аппаратному обеспечению
	2.3. Требования к программному обеспечению
	2.4. Подготовка рабочей станции и аппаратного комплекса

	3. Установка и настройка программного обеспечения
	3.1. Установка базового программного окружения
	3.2. Установка программного обеспечения
	3.3. Настройка параметров подключения к аппаратному комплексу
	3.4. Настройка пользователей и прав доступа
	3.5. Проверка корректности установки

	4. Архитектура и модули программного обеспечения
	4.1. Общая схема ПО
	4.2. Описание основных модулей
	4.3. Взаимодействие модулей и поток данных
	4.4. Хранение данных и конфигураций

	5. Работа с данными и сигналами
	5.1. Подключение к ПО и инициализация системы
	5.2. Основные операции: сбор, обработка и классификация сигналов
	5.3. Калибровка sEMG-датчиков и обучение модели
	5.4. Управление экзо-устройством в реальном времени
	5.5. Работа с метаданными и результатами сессий

	6. Интеграция с аппаратным комплексом и клиентскими приложениями
	6.1. Настройка подключения к экзо-устройствам
	6.2. Форматы данных и протоколы обмена
	6.3. Оптимизация работы в реальном времени
	6.4. Примеры использования API

	7. Администрирование и обслуживание
	7.1. Регулярные операции обслуживания
	7.2. Резервное копирование и восстановление данных
	7.3. Мониторинг производительности и отладка
	7.4. Обновление программного обеспечения

	8. Решение проблем и техническая поддержка
	8.1. Типичные проблемы и способы их решения
	8.2. Контакты технической поддержки

	Словарь терминов и сокращений
	Приложение А
	Приложение Б

