ОТЗЫВ

официального оппонента доктора химических наук, доцента Сысоевой Марии Александровны о диссертационной работе Сидоровой Марты Валерьевны «Разработка и исследование комплексов фитиновой кислоты с биологически активными аминами как компонентов гидрофильных гелей», представленной в диссертационный совет Д 208.085.06 при государственном бюджетном образовательном учреждении высшего профессионального образования «Самарский государственный медицинский университет» на соискание учёной степени кандидата фармацевтических наук по специальности 14.04.02 фармацевтическая химия, фармакогнозия

Актуальность темы.

Диссертационная работа М.В. Сидоровой посвящена получению высокоэффективных лекарственных средств на основе фитиновой кислоты и биогенных аминов и выполнена в соответствии с тематическим планом научно-исследовательских работ ГБОУ ВПО НижГМА Минздрава России (номер государственной регистрации 01201063248) по научной проблеме «Разработка и исследование новых лекарственных средств на основе природных и синтетических веществ».

Фитиновая кислота содержится в масличных, злаковых и бобовых культурах и является запасным источником фосфора в растительных тканях, в особенности в оболочке злаковых и других семян, но фосфор фитиновой кислоты для человека не является биодоступным.

В пищевой промышленности фитиновая кислота известна как добавка природного происхождения Е391. В промышленных масштабах фитиновую кислоту Е391 получают из растений. В странах СНГ до 2008 года антиоксидант Е391 использовался в винодельческой отрасли пищевой индустрии для удаления железа из виноматериалов, как фильтрующий и осветляющий материал, сорбент и флокулянт. Исследования, проведенные в 2008 году, показали, что пищевая добавка Е391 заметно понижает способность организма всасывать жизненно важные микроэлементы, такие как калий, фосфор, цинк, магний и т.д., что негативно сказывается на здоровье человека, регулярно получающего её в своем рационе, поэтому с 2008 года добавлять Е391 в продукты питания запрещено.

В качестве лекарственного препарата фитин используется до настоящего времени. В его состав входит смесь солей инозитфосфоных кислот (Mg2+, Ca2+). Фитин обладает остеогенным, гемопоэтическим действиями, улучшает функции нервной системы при патологиях, вызванных недостатком фосфора, обладает липотропным действием и обеспечивает профилактику онкологических заболеваний. Его назначают при истерии, неврастении, импотенции, астении, артериальной гипотонии, скрофулезе, остеомаляции, рахите, гипотрофии. В дерматологии фитин играет роль биогенного стимулятора, позволяющего улучшить внешний вид кожи и устранить воспаления. Его применяют для лечения себореи, дерматозов, сопровождающихся нарушением функций нервной системы и печени, поседении волос и облысения. В косметологии фитиновую кислоту используют для пилинга, который мягко и глубоко очищает кожу, избавляя от излишней пигментации и воспалений.

Фитин широко распространён в природе, большое его количество содержится в телятине, сердце, мозге, рыбе, молоке, зелёном горошке, пшеничных отрубях. В

организме соли инозитфосфорных кислот преобразуются до глюкуроновой кислоты, которая затем окисляется. С мочой выводится около 12 мг инозита в сутки. Суточная потребность организма в солях инозитфосфорных кислот — около 1-2 г. В крови содержится 0,37-0,76 мг% свободного инозита.

Фитиновая кислота является высокореакционным соединением, особенно в образовании комплексов с поливалентными ионами металлов. Это с одной стороны, препятствует усвоению ионов металлов в желудочно-кишечном тракте, с другой стороны, представляет интерес для разработки на её основе новых лекарственных средств. Особый интерес представляет получение комплексов фитиновой кислоты, которые по аналогии с фитином, могут проявлять различную терапевтическую активность. Увеличение растворимости фитиновой кислоты за счет комплексообразования, и соответственно улучшение её биодоступности является актуальной задачей, которую можно решить в рамках фармацевтической химии. В работе для этого разработаны способы получения комплексов фитиновой кислоты с биогенными аминами — ксимедоном, глюкозамином и трисамином, определена их структура, разработан гель, на основе фитиновой кислоты и ксимедона — «Ксифит», показаны его высокие репаративные и антиоксидантные свойства.

Структура диссертации и её содержание.

Диссертация включает введение, четыре главы, выводы, список использованных источников, приложения. Работа изложена на 166 страницах машинописного текста, содержит 24 таблицы, 48 рисунков, 5 схем. Список использованных источников состоит из 184 литературных ссылок.

Во введении обоснована актуальность работы, сформулирована цель и поставлены задачи, охарактеризованы научная новизна, практическая ценность, внедрение результатов исследования, личный вклад автора и степень апробации работы.

В первой главе приведен обзор литературы, который написан очень тщательно. После каждого раздела приведены выводы, которые обобщают материал и позволяют выбрать направление дальнейшего исследования. Он начинается с описания физико-химических свойств фитиновой кислоты, её комплексов с металлами и лигандами органической природы - аминами, углеводами, белками. Рассмотрены возможные структуры комплексов и образующие их связи. Показано, что большую роль в образовании комплексов фитиновой кислотой с различными агентами органической и неорганической природы играет рН среды.

Представлены фармакологические свойства фитиновой кислоты и фитатов. Автором систематизирован материал по терапевтическим свойствам этих соединений, которые приведены в таблице. Такой прием наглядно демонстрирует широкий спектр проработанных источников литературы и разнообразие активности, проявляемые фитиновой кислотой и фитатами. В том числе, например, они могут быть применены в профилактике онкологических заболеваний, или нормализовать работу сердца, печени, почек, кальциевый обмен и быть использованы на ранних стадиях развития ВИЧ.

Подробно рассмотрены процессы, связанные с образованием свободных радикалов, систем защиты от них в клетках нашего организма, и роль фитиновой кислоты в качестве антиоксиданта. Она заключается в способности фитиновой

кислоты как хелатировать металлы, участвующие в процессах генерации перекисного окисления липидов, так и активировать супероксиддисмутазу, способствующую переходу ксантиноксидазы в ксантиндегидрогеназу, не инициирующую перекисное окисление липидов, и в целом, способствует балансу про- и антиоксидантной системы в организме человека.

Показано, что метаболизм фитиновой кислоты в организме человека осложняется отсутствием в нем фитаз, способных расщеплять фитиновую кислоту и фитаты, поступающих с пищей, с высвобождением фосфатов. Это осложняет её усвоение в желудочно-кишечном тракте, а также приводит к снижению усвоения ионов металлов, углеводов, липидов, белков пищи за счет комлексообразования с нею. Сделан вывод о том, что поскольку фитиновая кислота может выполнять функцию антиоксиданта в организме человека, то при разработке лекарственных средств на её основе необходимо повысить её биодоступность.

Для решения этой задачи автором выбраны биологически активные амины — метаболики широкого спектра действия, такие как ксимедон, глюкозамин и трисамин. Приведены их физико-химические и фармакологические свойства. Показано, что определенные реакционные группы в этих соединениях могут участвовать в комплексообразовании с фитиновой кислотой в определенных диапазонах рН. Кроме того, при разрушении таких комплексов, после усвоения в организме человека, эти амины могут выполнять определенные функции по нормализации физиологических процессов. Ксимедон обладает антиоксидантными, противовоспалительными, репаративные иммуномодуляторными свойствами; глюкозамин способствует уменьшению деградации коллагена хряща; трисамин обладает буферными свойствами и изоосмотичен плазме крови, способен проникать через клеточные мембраны, и устранять внутриклеточный ацидоз.

В обзоре представлен широкий спектр аналитических методов качественного и количественного определения фитиновой кислоты, её комплексов и аминов. Для фитиновой кислоты, это в первую очередь её цветные реакции с катионами железа, лежащие в основе спектральных методов её определения. Из современных методов анализа подробно обсуждены применение 31Р-ЯМР, ВЭЖ-хроматографии для анализа фитиновой кислоты в гидролизатах и изолятах из бобов, миндаля, жаренного арахиса. Для анализа аминов: ксимедона — используют ИК- и электронную спектроскопию, ВЭЖ-хроматографию а также качественную реакцию с перманганатом калия в щелочной среде с образованием голубовато-зелёного быстроисчезающего окрашивания; реакции с образованием окрашенных продуктов лежат в основе количественного определения глюкозамина гидрохлорида фотоколориметрированием и методами ВЭЖ хроматографии с использованием УФ-детектора; для определения трисамина чаще используют нингидриновую или биуретовую реакции, с последующей спектрофотометрией, или реакции диазотирования и азосочетания, лежащих в основе титриметрических методов.

Вторая глава — «Объекты, методы и аналитические методики исследования» содержит пять разделов. В них приведены материалы и приборы, использованные в экспериментальной работе. Подробно изложены методы: выделения комплексов фитиновой кислоты с аминами и анализа фитиновой кислоты, аминов и их комплексов; получения гидрофильного геля комплекса фитиновой кислоты с ксимедоном и медико-биологические исследования полученных комплексов in vitro и in vivo. Из современных инструментальных методов анализа в работе применены 1НЯМР, 13С-ЯМР и 31Р-ЯМР, ИК- и электронная спектроскопия,

ВЭЖ-хроматография. Проведена статистическая обработка полученных результатов.

Третья глава посвящена синтезу и исследованию физико-химических свойств комплексов фитиновой кислоты с аминами. В ней подробно описано образование комплексов фитиновой кислоты с ксимедоном, глюкозамина гидрохлоридом и трисамином в водной среде, что фиксировалось в различных диапазонах рН с помощью потенциометрии и электронной спектроскопии. Вид кривых титрования фитиновой кислоты ксимедоном и трисамином схожи, что свидетельствует об образовании сопряженных ксимедону и трисамину кислот вследствие реакций переноса протона, что свидетельствует о том, что в образовании комплексов фитиновой кислоты с этими аминами большой вклад вносит донорно-акцепторное взаимодействие И водородное связывание. Рассчитан pK(KcиH+)=3,25сопряженной ксимедону кислоты в реакции с фитиновой кислотой и хлористоводородной кислотой. В случае комплекса фитиновой кислоты с глюкозамина гидрохлоридом, наиболее вероятно, образуются соединения солевого типа, стабилизованные хлорид-ионом.

Наиболее подробно исследованы комплексы фитиновой кислоты с аминами в твёрдом состоянии. С помощью ПК- УФ- 1Н-, 13С и 31Р-ЯМР спектроскопии. Установлено, что: комплексы фитиновой кислоты с ксимедоном образуют Нассоциированные агрегаты, в которых катиоидная часть представлена протонированной формой ксимедона, они аналогичны комплексам, образующимся по типу «гость-хозяин», в котором роль «хозяина» выполняет фитиновая кислота; комплексы фитиновой кислоты с глюкозамином гидрохлоридом представляют собой соединения солевого характера со стехиометрией глюкозамин гидрохлорид: трисамин 5:1, а в комплексах фитиновой кислоты с трисамином взаимодействие происходит по аминогруппе, стехиометрия комплекса зависит от условий приготовления и соотношение трисамин: фитиновая кислота и лежит в интервале от 5:1 до 10:1.

Применены различные подходы для определения антиоксидантной активности фитиновой кислоты и её комплексов с аминами in vitro, в условиях, приближенных к реальным, происходящим in vivo. Для этого антиоксидантные свойства анализируемых образцов на плазме крови человека изучались методом индуцированной биохемилюминесценции, реакцией Фентона. Проведены исследования антиоксидантных свойств (скорость нормализации свободнорадикального окисления (СРО)) фитиновой кислоты в диапазоне концентраций 5мМ-100мМ. Установлено, что максимальные антиоксидантные свойства этого соединения наблюдается в концентрации 10 мМ и превышают эти свойства у контрольного образца на 21%. Полученные данные подтверждены тем, что содержание одного из продуктов перекисного окисления липидов (ПОЛ), малонового диальдегида в плазме крови, было минимальным и наблюдалось увеличение активности супероксиддисмутазы в 2,5 раза при добавлении этой же концентрации фитиновой кислоты.

Антиоксидантные свойства (скорость нормализации СРО) комплексов фитиновой ксилоты с аминами (растворы, содержащие 10 мМ фитиновой кислоты и 1:5 раствор глюкозамина, или 1:6 раствор ксимедона, или 1:10 раствор трисамина) имеют практически такие же значения, как и у фитиновой кислоты. Автор объясняет это тем, что в этих условиях фитиновая кислота с большей вероятностью образует комплексы с ионами металлов, чем с аминами. С другой

стороны, в работе приведены данные об увеличении каталитической активности СОД под действием комплекса фитиновой кислоты с ксимедоном более чем в два раза, по сравнению фитиновой кислотой и с контролем. Это свидетельствует о его высоких антиоксидантных свойствах. Исследована интенсивность ПОЛ в плазме крови в образцах содержащих ксимедон, фитиновую кислоту и комплекс фитиновой кислоты с ксимедоном. Установлено, что в большей степени этот процесс инициирует сама фитиновая кислота (на 38%). Комплекс фитиновой кислоты с ксимедоном повышает интенсивность ПОЛ в плазме крови на 21%, а для ксимедона этот показатель находится на уровне с контролем.

Сопоставление динамики изменения антиоксидантной активности и ПОЛ позволило установить, что введение ксимедона, повышает антиоксидантную активность крови на 11,3% при сохранении исходного уровня интенсивности процессов липопероксидации. Фитиновая кислота способствует более сбалансированному нарастанию ПОЛ и антиоксидантной активности на 30 и 37% соответственно. Автор связывает такие изменения с адекватностью ответа про- и антиоксидантных систем крови здорового человека при введении этого вещества. Комплекс фитиновой кислоты с ксимедоном в большей степени стимулирует рост антиоксидантной активности, по сравнению с инициацией ПОЛ. Показано увеличение уровня этих показателей на 30 и 20% относительно контрольного образца, что позволило охарактеризовать рассматриваемый комплекс как соединение, обладающее преимущественно антиоксидантным действием.

В четвертой главе «Разработка противоожогового геля комплекса фитиновой кислоты и ксимедона» обоснованы компоненты рецептуры геля, приведены лабораторная технология приготовления геля и аналитические методы определения его компонентов с подробной схемой пробоподготовки, а также методы установления подлинности и количественного определения активных компонентов в лекарственной форме «Ксифит». Освещены разработанные нормы качества и валидационные характеристики методик определения ксимедона, фитиновой кислоты, натрия гиалуроната, нипагина и трисамина в геле «Ксифит», которые составляют основу спецификации и фармакопейной статьи на противоожоговый гель «Ксифит», приведенной в приложении 1. В этой главе подробно изложены результаты определения репаративных свойств геля на основе комплекса фитиновой кислоты и ксимедона. Исследование эффективности действия гидрофильных гелей с фитиновой кислотой в эксперименте на крысах показало, что наружное применение гелей на основе фитиновой кислоты и ксимедона при лечении ожоговой раны способствует более быстрой эпителизации поверхности ожога, по сравнению с гелями с фитиновой кислотой или с ксимедоном и лекарственным препаратом Декспантенолом. Площадь воспаления по истечении 10 суток при нанесении геля на основе фитиновой кислоты и ксимедона составляла 40 мм², а Декспантенола - 80 мм². Изучены процессы ПОЛ in vivo на плазме крови крыс, что позволило установить эффективность действия новых фармацевтических композиций и она обусловлена высоким значением общей антиоксидантной активности гелей на основе фитиновой кислоты и ксимедона со снижением продуктов липопероксидации в плазме крови на примере малонового диальдегида.

Выводы диссертации сформулированы корректно, и соответствуют поставленным целям и задачам.

Научная новизна исследований и практическая значимость диссертационной работы

Впервые получены комплексы фитиновой кислоты и биогенных аминов и установлена их структура.

Показано, что комплексы фитиновой кислоты с ксимедоном и трисамином в водной среде образуются за счет донорно-акцепторного взаимодействия и водородного связывания, а комплекс фитиновой кислоты с глюкозамина гидрохлоридом является соединением солевого типа.

Установлено, что в твёрдом состоянии - комплексы фитиновой кислоты с ксимедоном образуют Н-ассоциированные агрегаты, построенные по типу «гостьхозяин», в которых роль «хозяина» выполняет фитиновая кислота; комплексы фитиновой кислоты с глюкозамином гидрохлоридом представляют собой соединения солевого характера со стехиометрией глюкозамин гидрохлорид: трисамин 5:1; в комплексах фитиновой кислоты с трисамином взаимодействие происходит по аминогруппе, стехиометрия комплекса зависит от условий приготовления и соотношение трисамин: фитиновая кислота и лежит в интервале от 5:1 до 10:1.

Впервые в исследованиях *in vitro* на плазме крови человека установлено, что по скорости нормализации свободно-радикального окисления, по отношению к процессам липопероксидации и по положительному влиянию на активность супероксиддисмутазы комплексы фитиновой кислоты с ксимедоном проявляют более сильное антиоксидантное действие по сравнению фитиновой кислотой и её комплексами с глюкозамином и трисамином.

Впервые предложена рецептура геля на гидрофильной основе натрия гиалуроната, ксимедона, фитиновой кислоты, нипагина и трисамина — «Ксифит», приведена лабораторная технология приготовления геля. Разработаны валидационные характеристики методик определения всех компонентов в геле «Ксифит», а также нормы качества и спецификация на предложенный состав.

Доказаны его высокая осмотическая активность in vitro, высокая эффективность репаративного действия в эксперименте на крысах при моделировании термического ожога и высокое значение общей антиоксидантной активности in vivo (по снижению содержания малонового диальдегида в плазме крови, по сравнению с контролем).

Согласно актам, приведенным в приложении, результаты работы использованы в учебном процессе и научно-исследовательской работе в «Нижегородской государственной медицинской академии» и «Нижегородском медицинском базовом колледже», а также внедрены в производство на ООО «СОЗИДАТЕЛЬ».

Материалы диссертационной работы М.В. Сидоровой могут быть использованы в высших учебных заведениях и специализированных колледжах Российской Федерации для преподавания дисциплин: фармацевтическая химия, фармакология, анализ и стандартизация лекарственных средств, а так же в научно исследовательских центрах РАН РФ и на предприятиях отрасли, например ОАО «Нижфарм», ЗАО «Интелфарм», ОАО «Татхимфармпрепараты», ООО «ЭРАФАРМ» и ряде других.

Соответствие диссертационной работы заявляемой специальности

Материалы диссертации М.В. Сидоровой соответствуют пунктам 1, 2 и 3 паспорта специальности 14.04.02 — фармацевтическая химия, фармакогнозия. В

работе изложены: по пункту 1 - получение биологически активных комплексов фитиновой кислоты с биогенными аминами, а также гелей на их основе, путем направленного изменения структуры вещества природного происхождения, и проведено исследование их физико-химических и биологических свойств; по пункту 2 - осуществлено развитие принципов стандартизации и установление нормативов качества на разработанный противоожоговый гель «Ксифит», обеспечивающих терапевтическую активность и безопасность этого нового лекарственного средства; по пункту 3 - проведено совершенствование, унификация и валидация существующих методов контроля качества нового противоожогового лекарственного средства геля «Ксифит» на этапах его разработки, производства и потребления.

Замечания по диссертационной работе

Стр.56 - В методике построения калибровочного графика, при приготовлении раствора A, не указан объем мерной колбы в которой проводят разведение.

Стр. 62-B описании определения активности супероксиддисмутазы нет описания «исследуемого раствора». Поэтому из текста, приведенного далее, не понятно что означает : « где ΔD опыт и ΔD контроль — скорости реакции аутоокисления адреналина, соответственно, в присутствии и отсутствии гомогената.», термин гомогенат в методике встречается впервые.

Во второй главе «Объекты, методы и аналитические методики исследования» в разделе 2.5.1. «Исследования влияния фитиновой кислоты и её производных на процессы липопероксидации in vitro» и в третьей главе начиная с раздела 2.5.1. «Исследования влияния фитиновой кислоты и её производных на процессы липопероксидации in vitro» и далее не описан контроль, использованный в экспериментах этой серии исследований.

Стр. 95 - Почему для изучения антиоксидантных свойств комплексов фитиновой ксилоты с аминами были использованы растворы, содержащие 10 mM фитиновой кислоты, к которой в соотношении 1:5, 1:6 и 1:10 были прибавлены растворы глюкозамина, ксимедона и трисамина соответственно, а не растворы этих комплексов выделенных в твердом состоянии?

Стр. 97-98 - Почему интерпретация данных приведенных на рисунке 3.22 «Показано достоверное увеличение каталитической активности СОД как в присутствии InsP6H12, так и её комплексов (рис. 3.22).» не отражает приведенные на рисунке результаты? Комплекс фитиновой кислоты с глюкозамином имеет каталитическую активность СОД на уровне с контролем. Каталитическая активность СОД практически одинакова у фитиновой кислоты и её комплекса с трисамином, и почти в два раза выше у комплекса фитиновой кислоты с ксимедоном.

Стр. 106-107 – Согласно данным приведенным в таблице 4.1, оптимальным, по степени высвобождения ксимедона фитата и относительной осмотической активности геля является его состав, в котором содержание фитиновой кислоты - 6,0%, а выбран состав геля где её содержание — 12%.

В работе: имеется ряд опечаток, например, на стр. 24 - девятая строка сверху, на стр. 98 – третья строка сверху, на стр. 114 - восьмая строка сверху, на стр. 115 – пятая и восьмая строки сверху;

не все сокращения даны в списке сокращений и в тексте, например, стр. 26 – Hb, стр. 64 – СОП, стр. 118 – СО;

не обозначены оси на рисунках 1.14, 1.17;

не корректно сформулированы предложения или названия:

Стр.23 - В таблице 1.1 Терапевтические эффекты фитиновой кислоты и фитатов в колонке Фармакологическое действие (имеются в виду фитиновая кислота и фитаты) приведено - «Синтезирует масляную кислоту путем ферментации и приводит к снижению рН среды кишечника и желчных кислот.»

стр. 31 - названа колонка в таблице 1.3 «Органические лиганды», поскольку в её первой строке приведено «Металлы ...»

стр.116 — «Определение содержания гиалуроната натрия проводилось после трёх измерений оптической плотности по полученному уравнению графика (рис. 4.4., табл. 4.5) λ , нм.»

Указанные замечания не снижают научной и практической ценности рецензируемой диссертации.

Достоверность полученных результатов

Достоверность полученных результатов и обоснованность сделанных на их основе выводов не вызывает сомнений. М.В. Сидорова в своей работе использовала известные методики по определению антиоксидантной активности исследуемых объектов, такие как хемилюминесцентный метод, определение активности супероксиддисмутазы, определение уровня малонового диальдегида, а также первичных продуктов перекисного окислени липидов. Идентификация всех объектов исследования проведена с использованием: прибора «Bio line Specord S-100» (Analytik Jena, Germany) (электронные спектры поглощения); ИКспектрофотометра с преобразователем Фурье «IR Prestige-21» (Shimadzu, Japan); ВЭЖ-хроматографа «LC-10Avp» (Shimadzu, Japan); pH-метра «pH-150M» фирмы РУП (потенциометрическое титрование); ЯМР-спектрометра AgilentDD2 400 (Agilent Technologies, США) (спектры ЯМР ¹³С и ¹Н); импульсного ЯМРспектрометра Bruker AM500 (Bruker Daltonik GmbH, Германия) (спектры ³¹Р-ЯМР); анализатора «VarioMICRO» (Elementar Analysen systeme GmbH, Германия) (элементный анализ на содержание С, Н, N); лабораторных электронных аналитических весов «KERN 770-13» (KERN & Sohn GmbH, Germany). Проведена статистическая обработка экспериментальных данных с помощью программы Statistica 6,0.

Апробация полученных результатов, публикации и автореферат диссертации

Материалы диссертационной работы М.В. Сидоровой докладывались и обсуждались на Всероссийской молодежной научной школе «Биоматериалы и нано-биоматериалы: актуальные проблемы и вопросы безопасности» (Казань, 2012); Х Всероссийской сессии молодых учёных и студентов (Нижний Новгород, 2013); Восьмой национальной научно-практической конференции с международным участием «Активные формы кислорода, оксид азота, антиоксиданты и здоровье человека» (Смоленск, 2014); VI Международной научной конференции «Наука в современном обществе» (Ставрополь, 2014); Международной научно-практической конференции «Актуальные проблемы современной науки» (Уфа, 2015).

антиоксиданты и здоровье человека» (Смоленск, 2014); VI Международной научной конференции «Наука в современном обществе» (Ставрополь, 2014); Международной научно-практической конференции «Актуальные проблемы современной науки» (Уфа, 2015).

Материалы диссертации опубликованы в 4 статьях в отечественных журналах, рекомендованных ВАК для публикации материалов кандидатских диссертаций (Медицинский Альманах, Экспериментальная и клиническая фармакология, Врачаспирант, Химико-фармацевтический журнал) и в виде 5 тезисов докладов, сделанных диссертанткой на конференциях.

Автореферат достаточно полно и правильно отражает содержание диссертационной работы.

Заключение.

диссертационная целом, рецензируемая работа Сидоровой Марты Валерьевны «Разработка и исследование комплексов фитиновой кислоты биологически активными аминами компонентов гидрофильных гелей» как соответствует специальности 14.04.02 - фармацевтическая химия, фармакогнозия и является актуальной, цельной, законченной научной-квалификационной работой, выполненной на современном и высоком профессиональном уровне, по научной новизне, практической значимости и объему полученных данных соответствует требованиям (п. 9 «Положения ВАК РΦ о порядке присуждения степеней», утвержденным постановлением Правительства РФ №842 от 24.09.2013 г.) предъявляемым диссертациям, содержит К кандидатским решение задачи, фармацевтической имеющей существенное значение ДЛЯ химии, фитиновой комплексов _ получение и анализ биогенными аминами, противоожогового геля «Ксифит», а также разработка норм качества и спецификации на предложенный состав геля, а ее автор - Сидорова Марта Валерьевна заслуживает присуждения ей ученой степени кандидата фармацевтических наук по специальности 14.04.02 - фармацевтическая химия, фармакогнозия.

Официальный оппонент:

М.А. Сысоева

Доктор химических наук, доцент заведующая кафедрой Пищевой биотехнологии Федерального государственного бюджетного учреждения высшего профессионального образования Казанского национального исследовательского технологического университета

Почтовый адрес: 420015, г.Казань, ул Карла Маркса, д.68

телефон: 8(834) 231-89-12

Адрес электронной почты: oxygen1130@mail.ru

«15» мая 2015 г.