ГЛУЩЕНКО СВЕТЛАНА НИКОЛАЕВНА

СРАВНИТЕЛЬНОЕ ФАРМАКОГНОСТИЧЕСКОЕ ИССЛЕДОВАНИЕ ЛИСТЬЕВ И ПОБЕГОВ АЛОЭ ДРЕВОВИДНОГО (ALOE ARBORESCENS MILL.) И АЛОЭ ВЕРА (ALOE VERA L. EX WEBB)

3.4.2. Фармацевтическая химия, фармакогнозия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата фармацевтических наук

Диссертационная работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Научный руководитель:

доктор фармацевтических наук, доцент Шмыгарева Анна Анатольевна

Официальные оппоненты:

Белоногова Валентина Дмитриевна, доктор фармацевтических наук, профессор, заведующий кафедрой фармакогнозии с курсом ботаники федерального государственного бюджетного образовательного учреждения высшего образования «Пермская государственная фармацевтическая академия» Министерства здравоохранения Российской Федерации;

Зилфикаров Ифрат Назимович, доктор фармацевтических наук, профессор РАН, главный научный сотрудник отдела химии природных соединений Центра химии и фармацевтической технологии Федерального государственного бюджетного научного учреждения «Всероссийский научно-исследовательский институт лекарственных и ароматических растений».

Ведущая организация:

Пятигорский медико-фармацевтический институт, филиал федерального государственного бюджетного образовательного учреждения высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Пятигорск.

Защита состоится «	>>	2021 г. п	в часов	на заседании
диссертационного совета 21	1.2.061.06 при	федеральном	государственно	ом бюджетном
образовательном учреждении в	ысшего образова	ния «Самарскиї	й государственны	ый медицинский
университет» Министерства зд	дравоохранения	Российской Фе	едерации по адр	ресу: 443079, г.
Самара, пр. К. Маркса, 165 Б.				

С диссертацией можно ознакомиться в библиотеке по адресу: 443001, г. Самара, ул. Арцыбушевская, 171 и на сайте (http://www.samsmu.ru/scientists/science/referats/2021/) федерального государственного бюджетного образовательного учреждения высшего образования «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации.

Ученый секретарь диссертационного совета, кандидат фармацевтических наук, доцент

Жданова Алина Валитовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Согласно проекту «Стратегия развития фармацевтической промышленности в РФ до 2030 г.» первоочередной задачей считается разработка лекарственных препаратов, а также увеличение доли экспорта лекарственных препаратов отечественного производства. В связи с этим, актуальными являются исследования в области разработки и внедрения лекарственных препаратов (ЛП) на основе лекарственного растительного сырья (ЛРС), превосходствами которых в сравнении с химически препаратами, являются меньшая токсичность, широкий спектр действия, мягкий терапевтический эффект, а также зачастую более низкая стоимость (Киселева Т.Л., 2010; Куркин В.А., 2015).

Препараты на основе лекарственных растений активно используются для профилактики и лечения заболеваний органов и систем организма. Так, например, при заболеваниях желудочно-кишечного тракта широко используются слабительные препараты на основе ЛРС. Перспективными в данном отношении считаются растения рода Алоэ (Шмыгарева А.А., 2017; Зилфикаров И.Н., 2010). Род Алоэ относится к семейству асфоделовых (*Asphodelaceae*) и насчитывает более 300 видов растений. В России популярным видом является алоэ древовидное (*Aloe arborescens* Mill.), наделенное выносливостью и неприхотливостью к условиям окружающей среды. Алоэ древовидное (*Aloe arborescens* Mill.) в медицинской практике используются в качестве слабительного, регенерирующего, общетонизирующего, адаптогенного и биостимулирующего лекарственного средства (Шмыгарева А.А., 2017; Зилфикаров И.Н., 2008).

В государственном реестре ЛС зарегистрированы следующие препараты алоэ древовидного: «Алоэ экстракт жидкий» (ОАО "ДАЛЬХИМФАРМ", ОАО "Ереванская химикофармацевтическая фирма", ЗАО "ВИФИТЕХ); «Алоэ сок» (ЗАО "ВИФИТЕХ"); «Алоэ экстракт сухой» (ООО "Олигофарм"), «Алоэ линимент» (ЗАО "ВИФИТЕХ"); «Алоэ сироп с железом» (ЗАО "ВИФИТЕХ"); «Алоэ-плюс» (ООО "ДОКТОР Н"); «Алоэ ДН» (ООО "ДОКТОР Н"). Несмотря на кажущееся разнообразие препаратов алоэ, в форме суппозитории зарегистрирован только один гомеопатический препарат («Алоэ ДН»).

В странах зарубежья в медицинской практике и в косметологии широко применяется алоэ барбадосское (алоэ истинный, по - латыни — *Aloe barbadensis* Mill., синоним — *Aloe vera* L. Ex Webb), за счет ценного химического состава, а также благодаря регенерирующему, бактериостатическому и слабительному действию. В странах Европы и Америки основными препаратами алоэ вера являются гели и соки (Moniruzzaman M., Rokeya B., Ahmed S., Bhowmik A., Khalil M.I., Gan S.H., 2012). В России алоэ вера используется только в качестве биологически активных добавок (БАД) и косметических средств.

На сегодняшний день проблема стандартизации сырья алоэ древовидного и алоэ вера не решена. В $\Gamma\Phi$ $P\Phi$ XIV издания фармакопейные статьи на сырье алоэ древовидного и алоэ вера не представлены.

Важным условием разработки лекарственных препаратов на основе сырья алоэ древовидного и алоэ вера является углубленное изучение химического состава, совершенствование методов стандартизации, в основе которых лежит разработка качественного и количественного анализа ЛРС по ведущей группе биологически активных соединений (Куркин В.А., 2007). Решение вопросов разработки методик стандартизации новых лекарственных растительных препаратов неразрывно связано с разработкой унифицированных методик анализа сырья и препаратов, с использованием стандартных образцов (Самылина И.А. и др., 1994; 2006; Арзамасцев А.П. и др., 2000).

Степень разработанности темы. В ГФ РФ XIV издания фармакопейных статей на сырье представителей рода Алоэ нет. Российскими учеными (Зилфикаров И.Н., Оленников Д.Н., Ибрагимов Т.А., 2010) предложены методики качественного анализа сырья алоэ древовидного методом ТСХ (тонкослойная хроматография) с использованием в качестве подвижной фазы – петролельный эфир-ацетон (7:3) и детекцией в УФ-свете, а также суммы количественного анализа антраценпроизводных сырья алоэ древовидного спектрофотометрическим методом в пересчете на стандартный образец алоэ-эмодина. В Британской, Европейской, Японской и Американской фармакопеях качественный анализ листьев алоэ вера проводят с помощью метода тонкослойной хроматографии, с добавлением метанола и нагреванием до кипения исходного раствора. Хроматографическое разделение проводится в системе растворителей вода-метанол-этилацетат (13:17:100). Помимо метода тонкослойной хроматографии в Японской и Американской фармакопеях используют две цветные реакции. Первая реакция идет с добавлением декагидрататетрабората натрия и воды, путем нагревания на водяной бане, в результате раствор окрашивается в зеленый цвет. Во второй реакции к испытуемому раствору добавляют азотную кислоту, при этом раствор окрашивается в желто-коричневый цвет, который постепенно меняется на зеленый.

В Британской, Японской, Европейской фармакопеях и фармакопее США при количественном анализе используется спектрофотометрический метод, рассчитывается процентное содержание производных гидроксиантрацена, в пересчете на барбалоин.

На сегодняшний день в нашей стране отсутствуют фармакопейные методики качественного и количественного анализа листьев и побегов алоэ древовидного и алоэ вера. Предложенные зарубежные фармакопейные методики анализа имеют различные методологические подходы. Исходя из этого, разработка новых подходов к стандартизации ЛРС различных видов рода алоэ является актуальной.

Цель работы и основные задачи исследования. Целью диссертационного исследования является сравнительное фармакогностическое исследование листьев и побегов алоэ древовидного (*Aloe arborescens* Mill.) и алоэ вера (*Aloe vera* L. Ex Webb) в плане совершенствования методов стандартизации сырья и препаратов данных растений.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Систематизировать и обобщить литературные данные по вопросам химического состава, фармакологического действия, применения и стандартизации лекарственного растительного сырья (ЛРС) и лекарственных растительных препаратов (ЛРП) алоэ древовидного и алоэ вера.
- 2. Провести сравнительное морфолого-анатомическое исследование листьев и побегов алоэ древовидного (*Aloe arborescens* Mill.), алоэ вера (*Alo evera* L. Ex Webb).
- 3. Провести сравнительное исследование химического состава листьев и побегов алоэ древовидного (*Aloe arborescens* Mill.) и алоэ вера (*Aloe vera* L. Ex Webb).
- 4. Разработать методики качественного анализа листьев и побегов алоэ древовидного (*Aloe arborescens* Mill.) и алоэ вера (*Aloe vera* L. Ex Webb).
- 5. Разработать методики количественного определения суммы антраценпроизводных в листьях и побегах алоэ древовидного (*Aloe arborescens* Mill.) и алоэ вера (*Aloe vera* L. Ex Webb).
- 6. Разработать показатели качества для сырья алоэ древовидного (*Aloe arborescens* Mill.) и алоэ вера (*Aloe vera* L. Ex Webb).
- 7. Разработать компонентный состав, обосновать введение сока, а также унифицировать методики стандартизации лекарственных растительных препаратов «Мазь с соком алоэ

древовидного», «Суппозитории с соком алоэ древовидного» с методиками на сырье алоэ древовидное.

8. На основе результатов фармакогностических исследований разработать проект фармакопейной статьи «Алоэ листья и побеги свежие».

Научная новизна. Впервые в сравнительном плане проведено морфологоанатомическое исследование листьев и побегов алоэ древовидного и алоэ вера.

В ходе анализа компонентного состава листьев и побегов алоэ древовидного (*Aloe arborescens* Mill.) и листьев и побегов алоэ вера (*Aloe vera* L. Ex Webb) выделены и распознаны с использованием инструментальных методов (¹H-ЯМР-, ¹³С-ЯМР-спектроскопия, спектрофотометрии, масс-спектрометрии), химических превращений индивидуальных веществ, где доминирующими антраценпроизводными являются алоэ-эмодин и барбалоин. Обоснована рациональность осуществления методик стандартизации сырья алоэ древовидного и алоэ вера по ведущей группе БАВ (антраценпроизводным) с применением стандартного образца барбалоина.

Впервые предложенные нами подходы к стандартизации листьев и побегов алоэ древовидного и алоэ вера основаны на обнаружении доминирующего антраценпроизводного – барбалоина, осуществляются с использованием тонкослойной хроматографии (TCX), спектрофотометрии.

Разработаны и изложены показатели качества, испытания, методики стандартизации антраценпроизводных в разработанных нами препаратах «Мазь с соком алоэ древовидного», «Суппозитории с соком алоэ древовидного».

Научная новизна диссертационного эксперимента обоснована патентом РФ на изобретение № 2730845 «Способ получения суппозиториев с соком алоэ древовидного» (Бюл. № 24 от 26.08.20).

Теоретическая и практическая значимость работы. Исследованы морфологоанатомические особенности листьев и побегов алоэ древовидного, алоэ вера в сравнительном плане и выявлены диагностически значимые признаки, являющиеся общими для представителей рода *Asphodelaceae*. Выявлены новые ранее не описанные признаки, селективно отличающие листья и побеги сравниваемых видов алоэ.

Разработаны методики стандартизации антраценпроизводных в листьях и побегах алоэ древовидного и алоэ вера с применением тонкослойной хроматографии и спектрофотометрии. Предложенный нами качественный анализ методом ТСХ предусматривает использование в качестве стандартного образца (СО) раствор барбалоина. Метод дифференциальной спектрофотометрии суммы антраценпроизводных в пересчете на барбалоин предлагается для количественного анализа.

Разработаны показатели качества листьев и побегов алоэ древовидного и алоэ вера, в том числе числовые (содержания суммы антраценпроизводных в пересчете на барбалоин не менее 2%). В результате проведенных экспериментов разработан проект фармакопейной статьи «Алоэ листья и побеги свежие».

Разработан компонентный состав, обосновано использование сока, а также унифицированы методики стандартизации лекарственных растительных препаратов «Мазь с соком алоэ древовидного», «Суппозитории с соком алоэ древовидного» с методиками на сырье алоэ древовидное.

Для препаратов алоэ древовидного установлено противомикробное действие в отношении следующих микроорганизмов: *Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus*.

Методология и методы исследования. В основу методологии диссертации заложен анализ и обобщение литературных данных в области фармакогностического изучения растений рода Алоэ, степень актуальности и темы диссертационной работы. В соответствии с намеченной целью и задачами был обозначен план работы над диссертацией, а также выбраны объекты и метолы исследования.

В качестве объектов диссертационной работы использовали листья и побеги алоэ древовидного, алоэ вера культивируемые на кафедре управления экономики фармации, фармацевтической технологии И фармакогнозии Оренбургского государственного медицинского университета, культивируемые в Оренбургской области, сок алоэ, водноспиртовые экстракты и разработанные нами ЛРП, на основе сырья алоэ древовидного. Экспериментальную часть диссертационной работы осуществляли с помощью колоночной хроматографии, цифровой и люминесцентной микроскопии, тонкослойной хроматографии, масс-спектрометрии, спектрофотометрии, ЯМР-спектроскопии, пробирочных гистохимических реакций, микробиологических методов. Статистический анализ данных проводили с использованием программного обеспечения согласно ГФ РФ XIV издания.

Связь задач исследования с планами научных работ. Диссертационная работа выполнялась согласно тематическому плану научно-исследовательских работ ФГБОУ ВО СамГМУ Минздрава России (115042810034 до 14.05.2019, наименование НИОКР - «Комплексные исследования по разработке лекарственных средств природного и синтетического происхождения»; с 14.05.2019 номер государственной регистрации темы АААА-А19-119051490148-7, наименование НИОКР — «Химико-фармацевтические, биотехнологические, фармакологические и организационно-экономические исследования по разработке, анализу и применению фармацевтических субстанций и лекарственных препаратов»).

Основные положения, выносимые на защиту:

- 1. Результаты сравнительного морфолого-анатомического исследования листьев и побегов алоэ древовидного, алоэ вера.
- 2. Результаты изучения компонентного состава листьев и побегов алоэ древовидного и алоэ вера.
- 3. Результаты экспериментальной части по разработке методик качественного и количественного анализа листьев и побегов алоэ древовидного и алоэ вера.
- 4. Данные по разработке показателей качества листьев и побегов алоэ древовидного и алоэ вера.
- 5. Данные по разработке компонентного состава, обоснованию использования сока, а также по унификации методик стандартизации лекарственных растительных препаратов «Мазь с соком алоэ древовидного», «Суппозитории с соком алоэ древовидного» с методиками на сырье алоэ древовидное.

Степень достоверности. Экспериментальными данными доказана достоверность диссертационных исследований, которые установлены с использованием колоночной хроматографии, цифровой и люминесцентной микроскопии, тонкослойной хроматографии, спектрофотометрии, масс-спектрометрии, ЯМР-спектроскопии, химических микробиологических методов анализа, что доказано большим числом схем, рисунков, таблиц и хроматограмм. Статистическую обработку данных диссертационного осуществляли с использованием программы «Microsoft Excel» согласно требованиями ГФ РФ XIV издания. Отличиями между группами признаются статистически существенными при Р<0,05. Методики количественного определения, предлагаемые нами, валидированы.

Апробация работы. Итоговые результаты диссертационных исследований изложены и оценены на областных, российских и международных конференциях: международная научнопрактическая конференция «Современные технологии в мировом научном пространстве» (г. I Межвузовская студенческая научно-практическая г.); «Современные проблемы фармакогнозии» (г. Самара, 2016 г.); X Всероссийская студенческая научная конференция с международным участием «Студенческая наука и медицина XXI века: традиции, инновации и приоритеты» (г. Самара, 2016 г.); международная научно-практическая конференция «Проблемы и перспективы развития науки в России и мире» (г. Екатеринбург, 2017 г.); Международный молодежный научно-практический форум «Медицина будущего: от разработки до внедрения» (г. Оренбург, 2017 г.); Международная научно-практическая конференция «Прорывные научные исследования как двигатель науки» (г. Тюмень, 2018 г.); X Международный симпозиум «Фенольные соединения: фундаментальные и прикладные аспекты» (Γ. Москва, 2018 г.); Международная научно-практическая конференция «Перспективные этапы развития научных исследований: теория и практика» (г. Кемерово, 2018 г.); III Межвузовская студенческая научно-практическая конференция «Современные проблемы фармакогнозии» (г. Самара, 2018 г.).

Публикации. На основе результатов диссертационного исследования опубликовано в 17 научных работах, из них 5 статей в журналах, рекомендуемых ВАК Министерства науки и высшего образования Российской Федерации, и 1 статья в изданиях, индексируемых в международных наукометрических базах (Scopus), получен патент РФ на изобретение № 2730845 «Способ получения суппозиториев с соком алоэ древовидного» (Бюл. № 24 от 26.08.20).

Внедрение в практику. Фрагменты результатов диссертационного исследований используются в научном и учебном процессе в ФГБОУ ВО СамГМУ Минздрава России: на кафедре фармакогнозии с ботаникой и основами фитотерапии, кафедре фармацевтической технологии, кафедре управления и экономики фармации, кафедре химии фармацевтического факультета, в ФГБОУ ВО ОрГМУ Минздрава России на кафедре управления и экономики фармации, фармацевтической технологии и фармакогнозии фармацевтического факультета, в производственном процессе на ЗАО «Самаралектравы», в рабочем процессе ГБУЗ «Центр контроля качества лекарственных средств Самарской области», ГАУЗ «Оренбургский информационно-методический центр по экспертизе, учету и анализу обращения средств медицинского применения».

Личный вклад автора. Автором подобраны объекты исследования, направление, определены цель и задачи. Автором проведен научно-информационный поиск информации и экспериментальная часть. Автору принадлежит ведущая роль в сборе, анализе, систематизации и обобщении полученных результатов.

Объем и структура диссертации. Общий объем диссертационной работы — 167 страниц машинописного текста, включает 29 таблиц, 51 рисунок. Структура диссертационной работы следующая: введение, обзор литературы, описание объектов и методов исследования, четыре главы, раскрывающие результаты экспериментальных исследований, их обсуждение, общие выводы, приложение и список литературы, состоящий из 133 источников, из которых 33 на иностранных языках.

Во введении обоснована актуальность темы, приведены цель и задачи диссертационной работы, раскрыта новизна и практическая значимость экспериментальных исследований, обозначены положения, выносимые на защиту. Глава 1 посвящена литературному обзору данных о современном состоянии исследований листьев и побегов алоэ древовидного и алоэ

вера, в которой структурирована и резюмирована информация о химическом составе изучаемых растений, фармакологическому действию, а также применению в медицинской и фармацевтической практике. В главе 2 описаны объекты и методы исследования, методики химического, физико-химического изучения лекарственного сырья и индивидуальных веществ. В главе 3 в сравнительном плане представлены результаты морфолого-анатомического исследования листьев и побегов изучаемых видов. В главе 4 приведены результаты сравнительного химического исследования листьев и побегов алоэ древовидного и алоэ вера. В главе 5 отражены результаты исследований по разработке методик стандартизации сырья алоэ древовидного и алоэ вера. Глава 6 посвящена обоснованию состава, методик получения и стандартизации новых лекарственных растительных препаратов «Мазь с соком алоэ древовидного», «Суппозитории с соком алоэ древовидного».

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Объекты и методы исследования

Объектами данной диссертационной работы являлись свежие образцы листьев и побегов алоэ древовидного, алоэ вера, культивированные на кафедре управления и экономики фармации, фармацевтической технологии и фармакогнозии Оренбургского государственного медицинского университета (с 2015 по 2019 гг).

В рамках диссертационной работы исследовались лекарственные растительные препараты: жидкий экстракт алоэ древовидного в ампулах – производитель ЗАО «Вифитех», Россия; сок алоэ древовидного – производитель ЗАО «Вифитех», Россия; линимент алоэ древовидного – производитель ЗАО «Вифитех», Россия; разработанные нами ЛРП – мазь с соком алоэ древовидного и суппозитории с соком алоэ древовидного; индивидуальные вещества: барбалоин, алоэ-эмодин и алоэнин.

Анатомо-гистологическое исследование осуществляли с использованием цифровых микроскопов марки «Мотіс DM-111» и «Мотіс DM-39C-N9GO-А», люминесцентного микроскопа Альтами-ЛЮМ-2 с увеличениями х40, х100, х400. Изучение химического состава листьев и побегов алоэ древовидного и алоэ вера проводили методом адсорбционной жидкостной колоночной хроматографии с использованием сефадекса LH–20, полиамида SC 6, силикагеля L 40/100 и L 100/160. Для исследования извлечений из изучаемого сырья, выделенных веществ и разработанных лекарственных растительных препаратов методом тонкослойной хроматографии использовали пластинки «Сорбфил ПТСХ-АФ-А-УФ» и «Сорбфил ПТСХП-А-УФ» (Россия). Спектрофотометрическое исследование извлечений из сырья и разработанных препаратов проводили на спектрофотометрах«Specord 40» (AnalytikJena), «СФ-2000», «UNICO 2800» в кюветах с толщиной слоя 10 мм в диапазоне длин волн от 190 нм до 700 нм. ¹H-ЯМР и ¹³С-ЯМР-спектры регистрировали на приборе «Bruker AM 300» (300 МГц). Масс-спектры электронного удара регистрировали на приборе «Kratos MS-30».

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

1. Сравнительное морфолого-анатомическое исследование листьев и побегов алоэ древовидного и алоэ вера

Основные морфологические признаки листа алоэ древовидного: сочные, голые, мясистые, мечевидные, зеленовато-сизого цвета, в ширину до 7 см, в длину до 50 см, в толщину до 3 см, восковой налет, зубчатый край, стеблеобъемлющее влагалище, выпуклый с внутренней и вогнутый с наружной стороны. У алоэ древовидного маловетвистый и очень короткий стебель

с огромным количеством рубцов, который в длину достигает до 60 см (в комнатной культуре), но иногда в условиях естественного произрастания он достигает до 1 м, в толщину – до 12 мм (рис. 1).

Листья алоэ вера сочные, гладкие, темно-зеленого цвета с короткими зубцами по краям. Листья достигают 40 см в длину, в ширину — до 10 см, в высоту - до 1 м. Листья алоэ вера формируют прикорневую розетку диаметром 80 см. У алоэ вера очень короткий, но достаточно толстый ствол с малоразвитой корневой системой. На таком одревесневшем стволе остаются «рубцы» — это следы опавших старых листьев (рис 1.)

Рисунок 1 – Образцы сырья алоэ.

Обозначения: A — алоэ древовидное (Aloe arborescens Mill.); E — алоэ вера (Aloe vera L. Ex Webb).

При рассмотрении листа алоэ древовидного с поверхности видны клетки верхнего эпидермиса с мало извилистыми или почти прямыми стенками, нижнего - извилистые. Клетки верхнего и нижнего эпидермиса имеют комбинированную форму. Поверхность листа покрыта восковым слоем. Эпидерма однослойная, устьица с 4 околоустьичными клетками (тетрацитный тип), причем они погружены в ткань листа. На верхнем эпидермисе диагностируются секреторные клетки (рис. 2).

В качестве значимых анатомо-морфологических признаков листьев алоэ вера можно выделить клетки мякоти листа: округлые, крупные, бесцветные. Игольчатые кристаллы оксалата кальция располагаются по одному или несколько кристаллов вместе или собранные в пучок (рис. 3). Эпидерма однослойная, устьица с 4 околоустьичными клетками (тетрацитный тип). Эпидермис подстилается слоем мезофилла, который содержат рафиды.

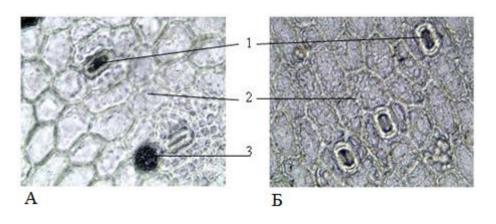


Рисунок 2— Препарат листа с поверхности алоэ древовидного (х400).
Поперечный срез: А — верхний эпидермис;
Б — нижний эпидермис.
Обозначения:
1 — устьице;
2 — хлоренхима;
3 — секреторная клетка.

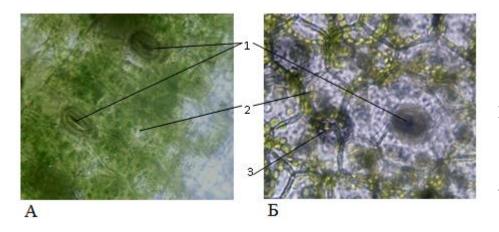
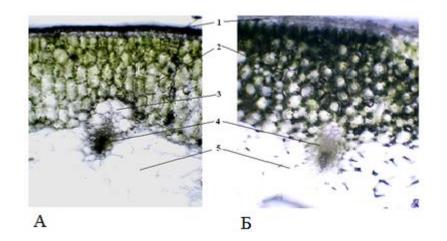


Рисунок 3 — Препарат листа с поверхности алоэ вера (х400).
Поперечный срез: А — верхний эпидермис;
Б — нижний эпидермис.
Обозначения:

1 – устьице;


2 – хлоренхима;

3 – секреторная клетка.

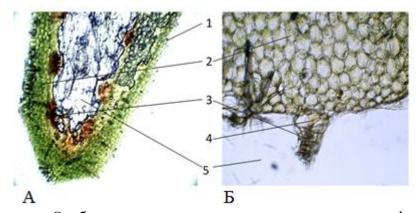
У алоэ древовидного наружная стенка эпидермальных клеток очень толстая, кутинизированная (рис. 4). Эпидерма подстилается слоем хлоренхимы, у алоэ древовидного состоящих из продолговатых клеток. В паренхиме данных видов растений содержится большое количество рафидов. Внутренняя часть листа состоит из очень крупной паренхимы, содержащей клеточный сок. На границе хлоренхимы с паренхимой располагаются в 1 ряд, на расстоянии друг от друга коллатеральные закрытые проводящие пучки с флоэмой, обращенной к эпидермису (рис.4). К флоэме снаружи примыкают крупные клетки с коричневатым, мелкозернистым содержимым – так называемые алоиновые клетки – хорошо диагностируемые у алоэ древовидного (рис. 4).

Внутренняя часть листа алоэ вера содержит гигантские клетки трубчатой формы с млечным соком. Он желтоватого оттенка и имеет очень горький вкус.

На границе хлоренхимы с паренхимой располагаются в 1 ряд, на расстоянии друг от друга коллатеральные закрытые проводящие пучки с флоэмой, обращенной к эпидермису. К флоэме снаружи примыкают крупные клетки с коричневатым содержимым — так называемые алоиновые клетки, длинной трубчатой формы, в которых локализуются фенольные вещества (рис. 4).

Рисунок 4 – Поперечный срез листа алоэ древовидного (A) и алоэ вера (Б).

Обозначения:


1 – эпидермис;

2 – палисадная ткань;

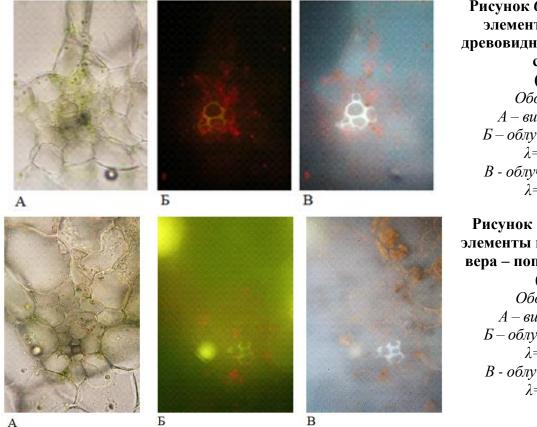
3 - «алоиновые» клетки;

4 – закрытый проводящий пучок;

5 – паренхима.

Рисунок 5– Поперечный срез листа алоэ вера (х400).

Обозначения:


1 − эпидермис;

2 –хлоренхима;

3-закрытый проводящий пучок; 4- «алоиновые» клетки; 5 – паренхима.

Особенности люминесценции клеточных стенок флоэмы проводящих пучков отличают сравниваемые виды алоэ друг от друга. В частности, при облучении УФ-светом с длиной волны $\lambda = 360$ нм клеточные стенки флоэмы у листьев алоэ древовидного не светятся, в то время как в аналогичных условиях освещения у алоэ вера клеточные стенки флоэмных клеток проводящего пучка люминесцируют бурым цветом. Данная особенность может быть обусловлена видовой специфичностью и использована в анализе подлинности сырья алоэ вера (рис. 6 и 7).

Гистологически эпидермис листа алоэ вера аналогичен эпидермису алоэ древовидного. Однако заметна значительная разница в размерах хлоропластов клеток мезофилла. У алоэ вера они имеют овальную форму (рис. 8) и значительный размер, превышающий размеры хлоропластов в клетках мезофилла алоэ древовидного (рис. 9).

Рисунок 6 – Проводящие элементы пучка алоэ древовидного – поперечное сечение (x 400).

Обозначения:

A — видимый свет;

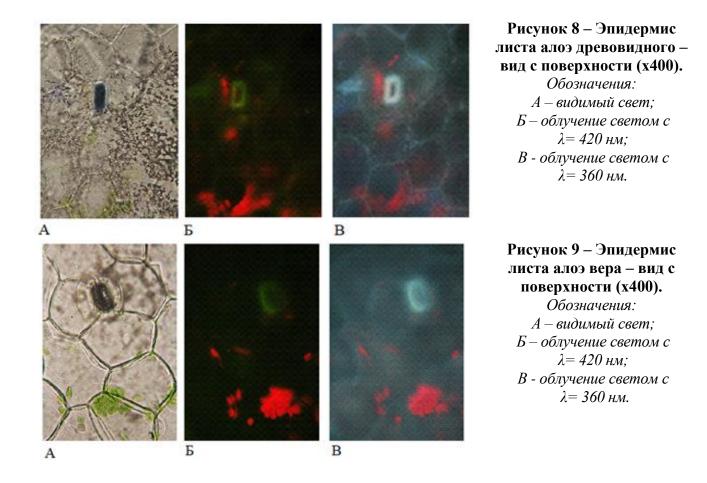
E – облучение светом с

 $\lambda = 420 \text{ hm}$:

В - облучение светом с

 $\lambda = 360 \text{ нм}.$

Рисунок 7 – Проводящие элементы пучка листа алоэ вера – поперечное сечение (x 100).


Обозначения:

A — видимый свет;

B – облучение светом с

 $\lambda = 420 \text{ hm}$;

В - облучение светом с $\lambda = 360 \text{ нм}.$

2. Фитохимическое исследование алоэ древовидного и алоэ вера

Из листьев и побегов алоэ древовидного и алоэ вера методом адсорбционной колоночной хроматографией, с последующей кристаллизацией и перекристаллизацией выделены 3 индивидуальных соединения: барбалоин, известный как смесь изомеров алоина А (1) и алоина В (2), алоэнин (3) и алоэ-эмодин (4) (табл. 1), для которых с использованием ¹Н-ЯМР-, ¹³С-ЯМР-спектроскопии, спектрофотометрии и масс-спектрометрии установлена структура (рис. 10-12).

Таблица 1 – Характеристики веществ, выделенных из экстракта листьев и побегов алоэ древовидного и алоэ вера

№ п/п	Название соединения	Химическая формула	Характеристики
1	Алоин А	OH OH OH	Кристаллы желтого цвета

2	Алоин В	OH OH OH	Кристаллы желтого цвета
3	Алоэнин	HO 3' 2' CH ₃ OH 5' 6 0 2 HO OH 0 OCH ₃	Светло-желтые игольчатые кристаллы
4	Эмодин	HO OH OH CH ₃	Игольчатые кристаллы оранжевого цвета

Известно, что барбалоин представляет собой смесь двух стереоизомеров — алоина A и алоина B, молекулярная масса которых подтверждается данными масс-спектрометрии: m/z 441.1908 [M+Na]+.

В спектре ЯМР 1 Н присутствуют однопротонные синглетные сигналы при 12.46 м.д. и 12.58 м.д., характерные для ОН-групп при С-1 и С-8 молекулы антраценпроизводных. В спектре ЯМР 1 Н обнаружены также сигналы ароматических протонов при 7.22 м.д. (1H, д, J = 2.0, H-2), 7.32 (1H, т, J = 7.5, H-6), 7.69 (1H, д, J = 2.0, H-4), 7.80 (1H, дд, J = 1.5 и 8.0, H-7), 8.43 (1H,), 7.87 (1H, дд, J = 1.5 и 8.0, H-5), подтверждающих наличие заместителей в молекуле барбалоина (1 и 2) в положениях С-1, С-3 и С-8.

Природа заместителя (CH_2OH -группа) в положении C-3 подтверждается наличием в спектре ЯМР 1H двухпротонного дублетного сигнала при 4.57 м.д. с константой спинспинового взаимодействия (КССВ) 7.5 Γ ц.

Кроме того, в спектре ЯМР ¹Н антраценпроизводных 1 и 2 обнаружен при 4.63 м.д. однопротонный дублетный сигнал протона при C-10 с КССВ 7 Гц. Этот вывод подтверждается тем обстоятельством в спектр ЯМР ¹³С присутствует лишь один сигнал при 193.35, принадлежащий карбонильной группе при С-9. Наличие в молекуле антраценпроизводных 1 и 2 β-D-глюкопиранозы подтверждается данными ¹Н-ЯМР-спектроскопии: однопротонный дублетный сигнал аномерного протона (H-1') при 4.78 м.д. с КССВ 7.2 Гц. О присоединении глюкозы в положение C-10 с образованием C-C-связи свидетельствуют величины химических сдвигов в ¹Н-ЯМР-спектре протона при C-10 (4.78 м.д.) и углеродного атома C-10 в ¹³С-ЯМР-спектре при 52.08 м.д.

В спектре ЯМР 1 Н соединения 4 присутствуют сигналы ароматических протонов при 5.58 м.д. (1H, J = 2, H-3), 6.24 м.д. (1H, J = 2, H-5), 6.35 м.д. (1H, J = 2, H-5) и 6.48 м.д. (1H, J = 2, H-5'). В спектре ЯМР 1 Н соединения 4 обнаружены трехпротонные синглетные сигналы при 2.12 м.д. и 3.83 м.д., принадлежащие соответственно ароматической 1 СН3-группе при 1 С-2' и

 OCH_3 -группе - при C-4 (рис. 10). Данные выводы подтверждаются также результатами 13 C ЯМР-спектроскопии: сигналы при 19.80 м.д. (C-2′, CH₃) и 56.25 м.д. (C-4, CH₃O) (рис. 11).

О наличии в молекуле соединения 4 свободной фенольной группы свидетельствует однопротонный синглетный сигнал в спектре ЯМР 1 Н при 10.87 м.д. Наличие в спектре ЯМР 13 С соединения 4 сигнала при 171.01 м.д. подтверждает тот факт, что в молекуле данного вещества присутствует карбонильная группа.

Наличие в молекуле соединения 4 β-D-глюкопиранозы подтверждается данными ¹Н-ЯМР-спектроскопии: однопротонный дублетный сигнал аномерного протона (H-1'') при 4.82 м.д. с КССВ 7.0 Гц. О присоединении глюкозы в положение (C-6'), свидетельствует величина химического сдвига в ¹³С-ЯМР-спектре углеродного атома 6': 164.09 м.д.

Таким образом, соединение 4 имеет строение 4-метокси-6-(2'- β -D-глюкопиранозил-4'-гидрокси-6'-метилфенил)-2-пирона и идентифицировано как алоэнин. Строение алоэнина (4) подтверждается также данными масс-спектрометрии: m/z 411.1285 [M+H]⁺, m/z 433.1106 [M+Na]⁺, m/z 449.0855 [M+K]⁺ (рис. 12).

Соединение (4) идентифицировано нами как 1,6,8-тригидрокси-3-метилантрахинон (эмодин) на основании физико-химическмих констант, а также данных УФ-, 1 H-ЯМР-, 13 С-ЯМР-спектроскопии и масс-спектрометрии (m/z: M+ 270).

Таким образом, доминирующими компонентами побегов и листьев алоэ древовидного и алоэ вера являются антраценпроизводныебарбалоин (1 и 2) и эмодин (4), а также алоэнин (3). Соединения 1-4 впервые выделены из свежих побегов и листьев алоэ вера в Российской Федерации.

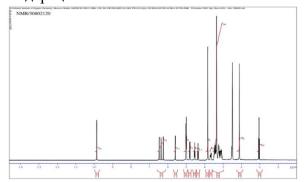


Рисунок 10 – ¹H-ЯМР-спектр алоэнина в DMSO-d6.

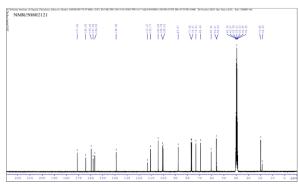


Рисунок 11 – ¹³С-ЯМР-спектр алоэнина в DMSO-d6.

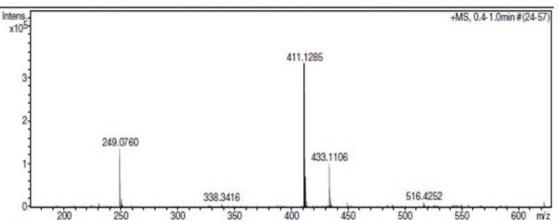


Рисунок 12- Масс-спектр алоэнина.

3. Разработка методик качественного и количественного анализа листьев и побегов алоэ древовидного и алоэ вера

Для определения подлинности листьев и побегов алоэ древовидного и алоэ вера разработаны методики тонкослойной хроматографии (TCX) и спектрофотометрии. В рамках данной диссертационной работы в ходе фитохимического исследования листьев и побегов алоэ древовидного и алоэ вера было обнаружено доминирующее антраценпроизводное— барбалоин. Следовательно, на данное вещество целесообразно опираться при разработке методик качественного и количественного анализа листьев и побегов алоэ древовидного и алоэ вера.

3.1. Качественный анализ методом тонкослойной хроматографии

Рисунок 13 – Хроматографический профиль водно-спиртового извлечения из листьев и побегов алоэ древовидного и алоэ вера: A – идентификация в дневном свете;

Б – идентификация в УФ-свете при 254 нм;

В – идентификация в УФ-свете при 365 нм.

Обозначения: 1 — водно-спиртовое извлечение из листьев и побегов алоэ древовидного; 2 — водно-спиртовое извлечение из листьев и побегов алоэ вера;

3 – барбалоин; 4 – алоэнин; 5 – алоэ-эмодин.

В результате исследований проанализирован ряд систем (хлороформ – спирт этиловый 96% – вода (26:16:3); этилацетат – муравьиная кислота – вода (10:2:3); этилацетат – этанол – вода (100:13,5:10)) и выявлена оптимальная по соотношению и составу для максимально четкого разделения БАВ из сырья алоэ древовидного и алоэ вера система, а именно: хлороформ – спирт этиловый 95% – вода (26:16:1,5). Детекцию исследуемых хроматографических пластинок проводили при дневном свете и под УФ излучением при 365 и 254 нм.

При сравнительном анализе хроматографических профилей водно-спиртовых экстрактов из сырья алоэ древовидного и алоэ вера под УФ излучением при 365 нм барбалоин зафиксирован в форме пятна с лимонно-желтой флуоресценцией при $R_f \approx 0,52$, пятно алоэнина при $R_f \approx 0,45$ с голубой флуоресценцией, пятно алоэ-эмодина при $R_f \approx 0,9$ с темно-оранжевой флуоресценцией (рис. 13).

Проведенные фитохимические исследования сырья алоэ древовидного и алоэ вера позволили выявить диагностически значимые соединения, при этом размер и интенсивность свечения пятна барбалоина из водно-спиртовых экстрактов сырья анализируемых растений дает возможность предположить его высокое содержание в сырье.

3.2. Качественный анализ методом спектрофотометрии

Дополнительно для определения подлинности сырья рекомендовано проведение спектрофотометрического анализа. Во время анализа изучались спектры щелочно-аммиачных растворов водно-спиртовых извлечений из сырья алоэ древовидного и алоэ вера. О вкладе антраценпроизводных в спектр лекарственного растительного сырья алоэ древовидного и алоэ свидетельствует батохромный сдвиг длинноволновой полосы вера при прямой спектрофотометрии и дифференциальные спектры с максимумом поглощения 412-416 нм. При этом важно отметить, что в случае алоэнина не зафиксирован батохромный сдвиг кривой поглощения в щелочно-аммиачной среде, что свидетельствует о возможности определения суммы антраценпроизводных в присутствии данного вещества, несмотря на его относительно высокое содержание. Исследование прямых и дифференциальных спектров водно-спиртовых и щелочно-аммиачных растворов листьев алоэ древовидного и алоэ вера показало, что максимум поглощения находится в длинноволновой области дифференциального спектра при длине 412±2 нм, что характерно для барбалоина, в то время как при прямой спектрофотометрии наблюдается лишь плечо. Пик при длине волны 412±2 нм свидетельствует о наличии барбалоина в составе сравниваемых видов растений (рис. 14).

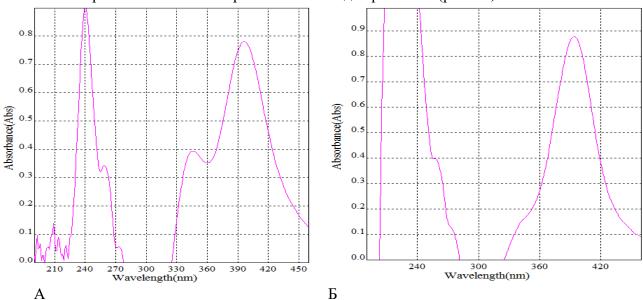


Рисунок 14 - Дифференциальные спектры растворов водно-спиртовых и щелочно-аммиачных извлечений из листьев алоэ древовидного (А) и алоэ вера (Б)

3.3. Разработка методик количественного определения суммы антраценпроизводных в листьях и побегах алоэ древовидного и алоэ вера

Определено, что выделенный из листьев и побегов алоэ древовидного и алоэ вера барбалоин во многом определяет характер кривой поглощения водно-спиртового извлечения, а значит, является диагностически значимым веществом для данного вида лекарственного растительного сырья.

С учетом того, что антраценпроизводные и, в частности, барбалоин, оказывают существенное воздействие на электронный спектр и, принимая во внимание тот факт, что максимум поглощения водно-спиртового извлечения сырья алоэ древовидного и алоэ вера, и раствора барбалоина (смесь алоина А и алоина В) аналогичны, и зафиксированы в условиях дифференциальной спектрофотометрии при 412 нм, в связи с этим целесообразно определение содержания суммы антраценпроизводных в пересчете на барбалоин при 412 нм.

На начальном этапе разработки методики количественного определения экстракция из анализируемых видов сырья проводилась с различными концентрациями экстрагента, в различных соотношениях «сырье-экстрагент», а также с вариацией времени экстрагирования на водяной бане. На основании проведенных экспериментов зафиксированы условия, при которых антраценпроизводные экстрагируются в максимальных количествах из сырья алоэ древовидного и алоэ вера: экстрагент – 60% C₂H₅OH; соотношение «сырье – экстрагент» –10:50; время экстракции – 30 мин на водяной бане при температуре 80–90°C.

Измерение оптической плотности проводят при длине волны 412 нм через 40 минут после приготовления всех растворов.

Методика количественного определения сырья: 10.0 г свежесобранного и измельченного сырья алоэ древовидного (алоэ вера) отвешивают в термоустойчивую колбу с притертым шлифом на 100 мл, прибавляют 60% С $_2$ Н $_5$ ОН 50 мл. Колбу, закупоренною пробкой, взвешивают на аналитических весах. Далее колбу с присоединенным дефлегматором (h = 50 см) 30 мин подвергают воздействию температуры с использованием водяной бани при умеренном кипении. Колбу с содержимым остужают, прикрывают пробкой, взвешивают и дополняют массу до исходной 60% С $_2$ Н $_5$ ОН. Извлечение отфильтровывают через бумажный фильтр (раствор A).

Испытуемый раствор: 2 мл (раствор A) отмеривают в колбу объемом 25 мл со шлифом из стекла, устойчивого к повышенным температурам, добавляют до 25 мл щ-а раствором. Оптическую плотность испытуемого раствора фиксируют после 40 минут при помощи спектрофотометра при λ =412 нм.

Раствор сравнения: 2 мл раствора A отмеряют в колбу объемом на 25 мл из стекла, устойчивого к повышенным температурам, доводят до метки 60% этиловым спиртом. Оптическую плотность испытуемого раствора фиксируют после 40 минут при помощи спектрофотометра при λ =412 нм.

Примечание: Приготовление раствора барбалоина. 0,0050 г барбалоина отвешивают в колбу объемом на 25 мл со шлифом из термоустойчивого стекла, доливают 60% С $_2$ Н $_5$ ОН до 25 мл (раствор A). 5 мл (раствор A) отмеривают в колбу на 25 мл со шлифом из стекла, устойчивого к повышенным температурам, добавляют щелочно-аммиачный раствор до 25 мл (раствор Б). Определяют значение оптической плотности раствора Б при λ =412 нм с использованием спектрофотометра.

Раствор сравнения: 5 мл (раствор A) отмеряли в колбу объемом на 25 мл из стекла, устойчивого к повышенным температурам, добавляли до метки 60% этиловым спиртом.

Содержание суммы антраценпроизводных в пересчете на барбалоин и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

$$X = \frac{E*m_0*50*25*5*100*100}{E_0*m*25*2*25*(100-W)},$$
 где

 E_0 – оптическая плотность раствора PCO барбалоина; m – масса навески сока, г; m_0 – масса PCO барбалоина, г; W – влажность, в процентах.

При отсутствии стандартного образца барбалоина целесообразно использовать теоретическое значение удельного показателя поглощения — 102:

$$X = \frac{E*50*25*100}{m*102*2*(100-W)}$$
, где

Е – оптическая плотность; т – масса сырья, в г; W – влажность, в процентах.

102 — удельный показатель поглощения ($E^{1\%}_{1c^{\mathcal{M}}})$ щелочно-аммиачного раствора РСО барбалоина А при 412 нм.

Метрологические характеристики методики количественного определения содержания суммы антраценпроизводных в листьях алоэ древовидного и алоэ вера представлены в таблицах 2 и 3.

Таблица 2 – Метрологические характеристики методики количественного определения содержания суммы антраценпроизводных в листьях и побегах алоэ древовидного

f	\overline{X}	S	P, % t (P,f)		ΔX	E, %	
10	2,46	0,227	95	2,23	±0,18	±6,40	

Таблица 3 – Метрологические характеристики методики количественного определения содержания суммы антраценпроизводных в листьях и побегах алоэ вера

f	\overline{X}	S	P, % t (P,f)		ΔX	E, %	
10	2,29	0,198	95	2,23	±0,14	±6,30	

Таким образом, в результате проведенных исследований нами предложена методика количественного определения суммы антраценпроизводных спектрофотометрическим методом (дифференциальный вариант) для сырья алоэ древовидного и алоэ вера в пересчете на барбалоин без предварительной стадии кислотного гидролиза и окисления антрагликозидов.

Содержание суммы антраценпроизводных в сырье алоэ древовидного находится в пределах от 2,3 до 2,6%, а в алоэ вера от 2,1 до 2,4%. Опираясь на полученные данные содержания антраценпроизводных в сырье алоэ древовидного и алоэ вера, в качестве нижней границы целесообразней предложить концентрацию не менее 2%.

3.7. Числовые показатели для листьев и побегов алоэ древовидного и алоэ вера.

Для листьев и побегов алоэ древовидного и алоэ вера были рассчитаны числовые показатели цельного сырья. В результате проведенных исследований мы можем рекомендовать нижний предел содержания антраценпроизводных в сырье алоэ древовидного и алоэ вера 2%, потеря массы при высушивании $\leq 10\%$, влажность $\geq 92\%$, не допускается наличие органических примесей, общая зола $\leq 2\%$, поломанных листьев $\leq 10\%$, минеральные примеси $\leq 0.5\%$. Числовые показатели, полученные в результате эксперимента, использовались при оформлении проекта фармакопейных статей «Алоэ листья и побеги свежие».

4. Разработка и стандартизация лекарственных препаратов на основе сырья алоэ древовидного

4.1.Состав, методика получения и стандартизации новых лекарственных растительных препаратов на основе сырья алоэ древовидного

Первоначально при разработке состава для дерматологической мази и суппозиторий нами проводились исследования по обоснованию введения в состав сгущенного сока алоэ древовидного. Для сравнительного анализа мы использовали сок алоэ древовидного, сгущенный сок алоэ древовидного (с содержанием влаги не более 30%), спиртовой экстракт алоэ древовидного 1:10, густой экстракт алоэ древовидного (с содержанием влаги не более 25%) (табл. 4).

Таблица 4 — Результаты количественного содержания суммы антраценпроизводных в различных извлечениях из сырья алоэ древовидного

№	Виды извлечений из сырья алоэ древовидного	Содержание суммы
		антраценпроизводных
		в пересчете на барбалоин, %
1.	Сок алоэ древовидного	6,68±0,02
2.	Сгущенный сок алоэ древовидного	7,33±0,04
3.	Спиртовой экстракт алоэ древовидного 1:10	6,81±0,03
4.	Густой экстракт алоэ древовидного	6,97±0,03

Количественное содержание в сгущенном соке алоэ древовидного по сравнению с остальными извлечениями из сырья алоэ древовидного максимально, соответственно на основании данных результатов именно его вводили в мазь и суппозитории.

При разработке дерматологической мази осуществляли подбор оптимальной основы, способствующей формированию максимально положительному терапевтическому эффекту мази. Для приготовления мазей использовали следующие основы, разрешенные к медицинскому применению: липофильные, гидрофильные и комбинированные. В качестве гидрофильной основы использовали: крахмал, воду и глицерин (мазевая основа № 3). Состав липофильно-гидрофильной основы (консистентная эмульсия вода-вазелин): вазелин, эмульгатор Т2 и вода (мазевая основа № 2), а компоненты комбинированной — безводный ланолин, вазелин, масло какао (мазевая основа № 4); парафин, вазелин, безводный ланолин, твин-80 и вода (мазевая основа № 1).

Все анализируемые дерматологические мази содержали 10% сгущенного сока алоэ древовидного, который вводили с учетом физико-химических свойств и характера основообразующих компонентов.

При выборе мазевой основы для разрабатываемой нами дерматологической мази учитывались результаты анализа степени высвобождения действующих веществ и определения антимикробной активности, при этом наилучшие результаты зафиксированы у мазевой основы №2, которую, на основании вышеизложенного, мы утвердили в качестве основы.

Препарат готовили по следующей методике: 10,8 г вазелина с 1,8 г эмульгатора Т-2 сплавляли в фарфоровой чашке на водяной бане. Полученный сплав переносили в ступку и добавляли 5,4 г горячей воды очищенной. Затем добавляли 2,0 г сгущенного сока алоэ древовидного, тщательно перемешивали пестиком. Масса мази около 20 г. Анализ суммыантраценпроизводных в пересчете на барбалоин проводили методом спектрофотометрии.

Методика количественного определения: В колбу из термоустойчивого стекла на 25 мл отвешивают 2 грамма мази, прибавляют 25мл 60% С₂Н₅ОН, нагревают до расплавления основы на водяной бане и перемешивают на протяжении 3 минут. Далее остужают и отфильтровывают в мерную колбу на 25 мл (раствор A). Р-а A (2 мл), отмеривают в колбу на 25 мл и добавляют щелочно-аммиачный раствор до метки.

Раствор сравнения: p-p A $(2\,$ мл) отмеривают в колбу на 25 мл и добавляют H_2O очищенную до 25 мл. При длине волны 412 нм измеряют оптическую плотность раствора на спектрофотометре.

Расчет содержания барбалоина в мази проводят по формуле:

$$X = \frac{E \times 25 \times 25 \times P \times 1000}{E_{1\text{CM}}^{1\%} \times m \times 2 \times 50}$$
, где

E - оптическая плотность исследуемого раствора; $E_{1\text{CM}}^{1\%}$ — удельный показатель поглощения рабочего стандартного образца барбалоина при длине волны 412 нм; m — масса навески, r; p- масса мазевой массы, r.

Содержание антраценпроизводных в полученном препарате составило 6,9 мг.

Метрологические характеристики методики количественного определения содержания суммы антраценпроизводных в мази с соком алоэ древовидного представлены в таблице 5.

Таблица 5 – Метрологические характеристики метода количественного определения антраценпроизводных в мази из сгущенного сока алоэ древовидного

f	\overline{X}	S	P, %	t (P,f)	ΔX	E, %
10	6,9	0,03405	95	2,25	$\pm 0,07595$	±5,90

В качестве основного действующего компонента, вводимого в состав суппозиториев, использовали сгущенный сок алоэ древовидного, выбранный на основании результатов исследований, описанных в таблице 4.

Далее для получения суппозиториев с соком алоэ древовидного подбирали основу, обеспечивающую максимальный терапевтический эффект:

- -суппозитории с соком алоэ древовидного на липофильной основе №1 (состав основы: эмульгатор твин-80 и масло какао).
- суппозитории с соком алоэ древовидного на гидрофильной основе №2 (состав основы: желатин, вода и глицерин).

При выборе суппозиторной основы для разрабатываемых нами суппозиторий учитывались результаты испытаний, в соответствии с ОФС «Суппозитории», а именно: распадаемость, температура плавления, степень высвобождения действующих веществ, что позволили считать гидрофильную основу \mathbb{N}_2 (желатин, вода и глицерин) оптимальной основой для суппозиторий с соком алоэ древовидного.

Для приготовления 5 суппозиториев с соком алоэ древовидного на гидрофильной основе №2 (состав основы: желатин, вода и глицерин)желатин медицинский в количестве 3 г помещают в фарфоровый стакан, заливают водой и дают набухнуть 30-45 мин, затем добавляют глицерин в количестве 15 г и помещают на водяную баню, перемешивая до однородной массы. Потом добавляют 2 г сгущенного сока алоэ древовидного и охлаждают массу до температуры, близкой к температуре застывания.

Приготовленную массу заливают в разъемные суппозиторные пластмассовые формы, предварительно смазанные вазелиновым маслом. Получают 5 суппозиториев состава:

- 0,3 г сгущенного сока алоэ древовидного;
- 2,7 г желатино-глицериновой суппозиторной основы.

Анализ суммы антраценпроизводных в пересчете на барбалоин проводили методом спектрофотометрии.

Методика количественного определения: в фарфоровой посуде на водяной бане расплавляют 5 г суппозиториев, охлаждают. В колбу из термостойкого стекла на 50 мл отвешивают 2 г полученной массы, прибавляют 25 мл 60% C_2H_5OH из мерного цилиндра, нагревают на водяной бане продолжительностью 15 мин, смешивают в течение 3 мин, остужают и отфильтровают в колбу на 25 мл (раствор A). Р-а A (2 мл), отмеривают в колбу на 25 мл добавляютщелочно-аммиачным раствором до метки.

Раствор сравнения: p-p A $(2\,$ мл) отмеривают в колбу на 25 мл и добавляют H_2O очищенную до 25 мл. Оптическую плотность раствора измеряют при 412 нм на спектофотометре.

Расчет содержания суммы антраценпроизводных в пересчете на барбалоин в суппозиториях проводят по формуле:

$$X = \frac{E \times 25 \times 25 \times P \times 1000}{E_{1\text{CM}}^{1\%} \times m \times 2 \times 50},$$
 где

E — оптическая плотность; $E_{1cm}^{1\%}$ - удельный показатель поглощения PCO барбалоина (102); P-масса суппозитория (3 грамма); m — масса точной навески (2 грамма).

Метрологические характеристики методики количественного определения содержания суммы антраценпроизводных в суппозиториях с сгущенном соком алоэ древовидного приведены в таблице 6.

Таблица 6 – Метрологические характеристики методики количественного определения суммы антраценпроизводных в суппозиториях со сгущенным соком алоэ древовидного

f	\overline{X}	S	P, %	t (P,f)	ΔX	E, %
10	7,20	0,0447	95	2,25	±0,0997	±6,80

4.2. Стандартизация лекарственных препаратов на основе сырья алоэ древовидного

Нами были исследованы следующие образцы ЛП на основе алоэ древовидного, представленные на фармацевтическом рынке РФ:

- Жидкий экстракт алоэ в ампулах (ЗАО «Вифитех»), Россия, состав листья алоэ древовидного 360 мг;
 - Сок алоэ (ЗАО «Вифитех»), Россия, состав 80 мл сока из листьев алоэ древовидного;
 - Линимент алоэ (ЗАО «Вифитех»), Россия, состав 7,8 г сока из листьев алоэ.

Содержание суммы антраценпроизводных в пересчете на барбалоин в различных препаратах представлено в таблице 7.

Таблица 7 – Результаты количественного содержания суммы антраценпроизводных в пересчете на барбалоин в различных препаратах на основе алоэ древовидного

$N_{\underline{0}}$	Лекарственный растительный	Содержание суммы антраценпроизводных
	препарат	в пересчете на барбалоин, %
1	Жидкий экстракт алоэ в ампулах (ЗАО	5,4
	«Вифитех»), Россия	
2	Сок алоэ (ЗАО «Вифитех»), Россия	4,4
3	Линимент алоэ (ЗАО «Вифитех»),	5,6
	Россия	

Метрологические характеристики методики количественного определения содержания суммы антраценпроизводных в промышленных препаратах алоэ древовидного представлены в таблице 8.

Таблица 8 – Метрологические характеристики методики количественного определения суммы антраценпроизводных в промышленных препаратах алоэ древовидного и алоэ вера

Препараты	f	\overline{X}	S	P, %	t (P,f)	ΔX	E, %
Жидкий экстракт алоэ древовидного в ампулах	10	5,40	0,01	95	2,25	±0,0223	±5,90
Линимент алоэ	10	5,60	0,0144	95	2,25	$\pm 0,0323$	±6,10
Сок алоэ древовидного	10	4,40	0,01702	95	2,25	±0,0379	±6,20

ЗАКЛЮЧЕНИЕ

Проведенное сравнительное фармакогностическое исследование листьев и побегов алоэ древовидного (*Aloe arborescens* Mill.) и алоэ вера (*Aloe vera* L. Ex Webb) дало возможность сформулировать следующие общие выводы:

- 1. Проведенное сравнительное морфолого-анатомическое исследование листьев и побегов алоэ древовидного и алоэ вера, что позволило выявить основные отличительные признаки изучаемых видов алоэ, которые заключаются в различной форме алоиновых клеток у алоэ древовидного и алоэ вера, различной форме и размерах клеток эпидермиса сравниваемых объектов, наличие пучков рафид на нижнем эпидермисе алоэ вера, наличие секреторных клеток на верхнем эпидермисе алоэ древовидного и алоэ вера.
- 2. В результате проведенной люминесцентной микроскопии было выявлено общее анатомическое строение: толстая кутикула у листьев рода алоэ; равная степень развития ксилемы и флоэмы; наличие в клетках водоносной ткани кристаллов оксалата кальция.
- 3. Проведенный фитохимический анализ листьев и побегов алоэ древовидного и алоэ вера с использованием метода ТСХ позволил обнаружить следующие соединения: барбалоин, алоэ-эмодин и алоэнин. Зафиксирован одинаковый максимум кривой поглощения водноспиртового извлечения из листьев и побегов алоэ древовидного и алоэ вера при 412±2 нм с помощью дифференциальной спектрофотометрии.
- 4. Из листьев и побегов алоэ древовидного и алоэ вера с использованием колоночной хроматографии, реакций кислотного и ферментативного гидролиза, ТСХ, УФ-спектроскопии, ЯМР-спектроскопии и масс-спектрометрии выделены и идентифицированы индивидуальные вещества барбалоин, алоэ-эмодин и алоэнин, причем установлено, что барбалоин является доминирующим компонентом сырья данных растений.
- 5. Разработана методика качественной оценки листьев алоэ древовидного и алоэ вера методом тонкослойной хроматографии с использованием стандартного образца барбалоина. Кроме того, оценка подлинности листьев и побегов алоэ древовидного и алоэ вера возможна при использовании спектроскопии: кривые поглощений водно-спиртового извлечения из листьев и побегов алоэ древовидного и алоэ вера имеют максимум при длине волны 412±2 нм.
- 6. Разработана методика количественного определения суммы антраценпроизводных в пересчете на барбалоин и абсолютно сухое сырье в листьях и побегах алоэ древовидного методом дифференциальной спектрофотометрии при длине волны 412 нм без предварительного гидролиза и окисления. Содержание суммы антраценпроизводных в пересчете на барбалоин и абсолютно сухое сырье в листьях и побегах алоэ древовидного варьирует от 2,3 до 2,6%%
- 7. Разработана методика количественного определения суммы антраценпроизводных в пересчете на барбалоин и абсолютно сухое сырье в листьях и побегах алоэ вера методом дифференциальной спектрофотометрии при длине волны 412 нм. Содержание суммы антраценпроизводных в пересчете на барбалоин и абсолютно сухое сырье в листьях и побегах алоэ вера варьирует от 2,1-2,4%.
- 8. Разработаны методики количественного определения суммы анраценпроизводных в пересчете на барбалоин и абсолютно сухое сырье методом дифференциальной спектрофотометрии в разработанных нами препаратах из сока листьев алоэ древовидного в мази и суппозиториях.
- 9. При проведении исследований препаратов на основе сока алоэ древовидного согласно ОФС «Мази» и «Суппозитории» было обосновано применение данных лекарственных растительных препаратов в качестве противомикробных и ранозаживляющих средств.

10. Основные положения разработанных нами методик качественного, количественного анализа, а также числовые показатели для листьев и побегов алоэ древовидного и алоэ вера нашли отражение в проекте ФС на ЛРС – «Алоэ листья и побеги свежие».

Практические рекомендации

Результаты диссертационной работы позволяют усовершенствовать подходы к стандартизации лекарственного растительного сырья, содержащего антраценпроизводные, и могут быть использованы в учебном процессе по курсам «Фармакогнозия» и «Фармацевтическая химия», а также в центрах сертификации и контроля качества лекарственных средств и на фармацевтических предприятиях.

Перспективы дальнейшей разработки темы

Проведение диссертационного исследования имеет научно-практическое значение для фармакогнозии и фармацевтической химии в том числе с целью дальнейшего изучения химического состава растений, содержащих антраценпроизводные, а также разработки объективных методик анализа и подходов к стандартизации лекарственного растительного сырья и лекарственных растительных препаратов.

Список работ, опубликованных по теме диссертации

- 1. Витвинина, С.Н. Морфолого-анатомическое исследование листьев и побегов алоэ древовидного / С.Н. Витвинина, В.А. Куркин, А.А. Шмыгарева, А.Н. Саньков // **Известия Самарского научного центра Российской академии наук**. − Т. 17 (№ 5-3). − 2015. − С.947-950.
- 2. Куркин, В.А. Сравнительное морфолого-анатомическое исследование алоэ древовидного и алоэ пестрого / В.А. Куркин, А.А. Шмыгарева, А.Н. Саньков, С.Н. Витвинина // **Медицинский альманах**. №2 (42). 2016. С.147-149.
- 3. Глущенко, С.Н. Морфолого-анатомическое исследование листа алоэ-вера / С.Н. Глущенко, А.А. Шмыгарева, А.Н. Саньков // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. №3. 2018. C.205-210.
- 4. Глущенко, С.Н. Разработка методики количественного определения антраценпроизводных в листьях алоэ древовидного (*Aloe arborescens* L.) / С.Н. Глущенко, В.А. Куркин, А.А. Шмыгарева, А.Н. Саньков //Вестник Смоленской государственной медицинской академии. − Т.19 (№3). − 2020. − С.214-219.
- 5. Глущенко, С.Н. Разработка суппозиториев на основе сока алоэ древовидного / С.Н. Глущенко, А.А. Шмыгарева, А.Н. Саньков //**Аспирантский Вестник Поволжья**. № 1-2. 2020. С.126-130.
- 6. Glushchenko, S.N. Development of dermatological ointment based on Aloe arborescens juice / S.N. Glushchenko, E. A. Mikhaylova, V.A. Kurkin, A. A. Kochukova // **Research Journal of Pharmacy and Technology (RJPT).** − 2021. − №14. − P. 3617 − 3620.
- 7. Витвинина, С.Н. Обзор рынка слабительных препаратов РФ / С.Н. Витвинина // Сборник материалов X Всероссийской студенческой научной конференции с международным участием. Самара: СаМГМУ, 2016. С. 84-85.
- 8. Глущенко, С.Н. Алоэ в трудах великого врачевателя Авиценны (Абу али ибн синны) / С.Н. Глущенко, А.А. Шмыгарева // Перспективные этапы развития научных исследований: теория и практика. Сборник статей Международной научно практической конференции. Кемерово: ЗапСибНЦ, 2018. С. 108-109.
- 9. Глущенко, С.Н. Анализ растительных лекарственных препаратов на основе алоэ-вера, представленных на рынке США / С.Н. Глущенко, А.А. Шмыгарева // Прорывные научные исследования как двигатель науки. Сборник статей Международной научно практической конференции Тюмень: НИЦ АЭТЕРНА, 2018. С. 227-231.
- 10. Глущенко, С.Н. Проведение качественного анализа листьев алоэ древовидного и листьев алоэ пестрого / С.Н. Глущенко // Сборник материалов международного молодежного научно-

- практического форума «Медицина будущего: от разработки до внедрения». Оренбург: Издво ОрГМУ, 2017. С.94-95.
- 11. Глущенко, С.Н. Сравнительное исследование методик стандартизации сырья алоэ в фармакопеях зарубежных стран и фармакопеи России / С.Н. Глущенко // Современные проблемы фармакогнозии. Сборник материалов III Межвузовской студенческой научнопрактической конференции. Самара: СамГМУ, 2018. С. 68-72.
- 12. Глущенко, С.Н. Сравнительный анализ номенклатуры группы растительных лекарственных средств, на основе алоэ древовидного, представленных на российском рынке / С.Н. Глущенко, А.А. Шмыгарева // Современные технологии в мировом научном пространстве. Сборник статей Международной научно практической конференции. Казань: НИЦ АЭТЕРНА, 2016. С.166-170.
- 13. Глущенко, С.Н. Сравнительный качественный анализ листьев алоэ древовидного (*Aloe arborescens* L.) и листьев алоэ вера (*Aloe vera* L.) / С.Н. Глущенко, А.А. Шмыгарева, В.А. Куркин // Фенольные соединения: свойства, активность, инновации. Сборник научных статей по материалам X Международного симпозиума «Фенольные соединения: фундаментальные и прикладные аспекты». Москва, 2018. С. 255-259.
- 14. Глущенко, С.Н. Сравнительный качественный анализ листьев алоэ древовидного (*Aloe arborescens* L.) и листьев алоэ пестрого (*Aloe variegata* L.) / С.Н. Глущенко, А.А. Шмыгарева // Современные проблемы фармакогнозии. Сборник материалов I Межвузовской студенческой научно-практической конференции. Самара: СаМГМУ, 2016. С. 78-83.
- 15. Шмыгарева, А.А. Актуальные аспекты создания импортозамещающих слабительных лекарственных препаратов / А.А. Шмыгарева, К.Н. Семенюта, М.В. Рыбалко, С.Н. Глущенко // IX Международная научно-практическая конференция «Проблемы и перспективы развития науки в России и мире». Екатеринбург, 2017. С. 135-139.
- 16. Глущенко, С.Н. Разработка методик стандартизации лекарственных растительных препаратов на основе алоэ древовидного и алоэ вера / С.Н. Глущенко, А.А. Шмыгарева // Современные проблемы фармакогнозии. Сборник материалов IV Межвузовской студенческой научно-практической конференции. Самара: СамГМУ, 2019. С. 119-125.
- 17. Куркин, В.А. Новые подходы к количественному определению антраценпроизводных в сырье и препаратах алоэ древовидного / В.А. Куркин, Т.К. Рязанова, А.А. Шмыгарева, С.Н. Глущенко //OlymPus. Гуманитарная версия. №1 (12). 2021. С.107-109.

Патент

Пат. 2730845 Российская Федерация, МПК А61К 36/886 А61К 9/02. Способ получения суппозиториев с соком алоэ древовидного/ Куркин В. А., Глущенко С.Н., Шмыгарева А.А., Саньков А.Н.; заявитель и патентообладатель СамГМУ. — № 2020104649; заявл. 31.01.2020; опубл. 26.08.2020, Бюл. № 24. — 8 с.: ил.